{"title":"Chronological and Replicative Aging of CD51<sup>+</sup>/PDGFR-α<sup>+</sup> Pulp Stromal Cells.","authors":"L Yao, F Li, C Yu, H Wang, Y Wang, L Ye, F Yu","doi":"10.1177/00220345231158038","DOIUrl":null,"url":null,"abstract":"<p><p>As a crucial source of mesenchymal stromal cells, CD51<sup>+</sup>/PDGFR-α<sup>+</sup> human dental pulp stromal cells (hDPSCs) are promising seeding cells for regenerative medicine. Cellular senescence hinders the translational application of hDPSCs. However, it remains unclear whether chronological and replicative senescence results in distinct outcomes for hDPSCs. To investigate the influence of senescence on DPSCs, we used transgenic lineage tracking, immunofluorescence, flow cytometry, and various molecular experiments to depict the dynamic pattern of hDPSCs in mice and humans during chronological and replicative senescence. The data demonstrated that CD51<sup>+</sup>/PDGFR-α<sup>+</sup> cells were decreased in chronological senescence. Impaired self-renewal and higher ossificatory differentiation were observed in chronologically senescent hDPSCs. Regarding replicative senescence, a decreased CD51<sup>+</sup> but upregulated PDGFR-α<sup>+</sup> population was observed in culture. Furthermore, weakened self-renewal and osteogenic differentiation were observed in replicatively senescent hDPSCs. In summary, CD51<sup>+</sup>/PDGFR-α<sup>+</sup> hDPSCs decrease in chronologically aged pulp, with self-renewal that is impaired without impaired osteogenic differentiation. However, replicative senescence has a different impact: self-renewal and ossific differentiation are impaired and CD51 expression is reduced, but PDGFR-α expression remains. These findings demonstrate the different outcomes of chronological and replicative senescence in CD51<sup>+</sup>/PDGFR-α<sup>+</sup> hDPSCs. Furthermore, we revealed that impaired self-renewal is the core dysfunction for both types of cellular aging and that osteogenic differentiation capability differs between them. This study provides insights into the influence of chronological and replicative senescence on the characteristics and capabilities of hDPSCs. These advances provide fundamental knowledge to alleviate cellular aging of CD51<sup>+</sup>/PDGFR-α<sup>+</sup> hDPSCs and promote their translational applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345231158038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
As a crucial source of mesenchymal stromal cells, CD51+/PDGFR-α+ human dental pulp stromal cells (hDPSCs) are promising seeding cells for regenerative medicine. Cellular senescence hinders the translational application of hDPSCs. However, it remains unclear whether chronological and replicative senescence results in distinct outcomes for hDPSCs. To investigate the influence of senescence on DPSCs, we used transgenic lineage tracking, immunofluorescence, flow cytometry, and various molecular experiments to depict the dynamic pattern of hDPSCs in mice and humans during chronological and replicative senescence. The data demonstrated that CD51+/PDGFR-α+ cells were decreased in chronological senescence. Impaired self-renewal and higher ossificatory differentiation were observed in chronologically senescent hDPSCs. Regarding replicative senescence, a decreased CD51+ but upregulated PDGFR-α+ population was observed in culture. Furthermore, weakened self-renewal and osteogenic differentiation were observed in replicatively senescent hDPSCs. In summary, CD51+/PDGFR-α+ hDPSCs decrease in chronologically aged pulp, with self-renewal that is impaired without impaired osteogenic differentiation. However, replicative senescence has a different impact: self-renewal and ossific differentiation are impaired and CD51 expression is reduced, but PDGFR-α expression remains. These findings demonstrate the different outcomes of chronological and replicative senescence in CD51+/PDGFR-α+ hDPSCs. Furthermore, we revealed that impaired self-renewal is the core dysfunction for both types of cellular aging and that osteogenic differentiation capability differs between them. This study provides insights into the influence of chronological and replicative senescence on the characteristics and capabilities of hDPSCs. These advances provide fundamental knowledge to alleviate cellular aging of CD51+/PDGFR-α+ hDPSCs and promote their translational applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.