{"title":"LSTM-enhanced multi-view dynamical emotion graph representation for EEG signal recognition.","authors":"Guixun Xu, Wenhui Guo, Yanjiang Wang","doi":"10.1088/1741-2552/ace07d","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Significance:</i>This paper proposes an LSTM-enhanced multi-view dynamic emotion graph representation model, which not only integrates the relationship between electrode channels into electroencephalogram (EEG) signal processing to extract multi-dimensional spatial topology information but also retains abundant temporal information of EEG signals.<i>Approach:</i>Specifically, the proposed model mainly includes two branches: a dynamic learning of multiple graph representation information branch and a branch that could learn the time-series information with memory function. First, the preprocessed EEG signals are input into these two branches, and through the former branch, multiple graph representations suitable for EEG signals can be found dynamically, so that the graph feature representations under multiple views are mined. Through the latter branch, it can be determined which information needs to be remembered and which to be forgotten, so as to obtain effective sequence information. Then the features of the two branches are fused via the mean fusion operator to obtain richer and more discriminative EEG spatiotemporal features to improve the performance of signal recognition.<i>Main results:</i>Finally, extensive subject-independent experiments are conducted on SEED, SEED-IV, and Database for Emotion Analysis using Physiological Signals datasets to evaluate model performance. Results reveal the proposed method could better recognize EEG emotional signals compared to other state-of-the-art methods.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ace07d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective and Significance:This paper proposes an LSTM-enhanced multi-view dynamic emotion graph representation model, which not only integrates the relationship between electrode channels into electroencephalogram (EEG) signal processing to extract multi-dimensional spatial topology information but also retains abundant temporal information of EEG signals.Approach:Specifically, the proposed model mainly includes two branches: a dynamic learning of multiple graph representation information branch and a branch that could learn the time-series information with memory function. First, the preprocessed EEG signals are input into these two branches, and through the former branch, multiple graph representations suitable for EEG signals can be found dynamically, so that the graph feature representations under multiple views are mined. Through the latter branch, it can be determined which information needs to be remembered and which to be forgotten, so as to obtain effective sequence information. Then the features of the two branches are fused via the mean fusion operator to obtain richer and more discriminative EEG spatiotemporal features to improve the performance of signal recognition.Main results:Finally, extensive subject-independent experiments are conducted on SEED, SEED-IV, and Database for Emotion Analysis using Physiological Signals datasets to evaluate model performance. Results reveal the proposed method could better recognize EEG emotional signals compared to other state-of-the-art methods.
目的与意义:提出了一种基于lstm的多视角动态情绪图表示模型,该模型不仅将电极通道之间的关系整合到脑电图信号处理中,提取了脑电图信号的多维空间拓扑信息,而且保留了脑电图信号丰富的时间信息。具体而言,该模型主要包括两个分支:动态学习多图表示信息分支和具有记忆功能的时间序列信息学习分支。首先,将预处理后的脑电信号输入到这两个分支中,通过前一个分支动态地找到适合于脑电信号的多个图表示,从而挖掘出多个视图下的图特征表示。通过后一个分支,可以确定哪些信息需要被记住,哪些信息需要被遗忘,从而获得有效的序列信息。然后通过均值融合算子对两个分支的特征进行融合,得到更丰富、更具判别性的脑电信号时空特征,提高信号识别的性能。最后,利用生理信号数据集对SEED、SEED- iv和Database for Emotion Analysis进行了广泛的受试者独立实验,以评估模型的性能。结果表明,与现有方法相比,该方法能更好地识别EEG情绪信号。
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.