Hirohisa Tamagawa, Toi Nakahata, Ren Sugimori, Bernard Delalande, Titus Mulembo
{"title":"The Membrane Potential Has a Primary Key Equation","authors":"Hirohisa Tamagawa, Toi Nakahata, Ren Sugimori, Bernard Delalande, Titus Mulembo","doi":"10.1007/s10441-023-09467-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is common to say that the origin of the membrane potential is attributed to transmembrane ion transport, but it is theoretically possible to explain its generation by the mechanism of ion adsorption. It has been previously suggested that the ion adsorption mechanism even leads to potential formulae identical to the famous Nernst equation or the Goldman-Hodgkin-Katz equation. Our further analysis, presented in this paper, indicates that the potential formula based on the ion adsorption mechanism leads to an equation that is a function of the surface charge density of the material and the surface potential of the material. Furthermore, we have confirmed that the equation holds in all the different experimental systems that we have studied. This equation appears to be a key equation that governs the characteristics of the membrane potential in all systems.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-023-09467-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is common to say that the origin of the membrane potential is attributed to transmembrane ion transport, but it is theoretically possible to explain its generation by the mechanism of ion adsorption. It has been previously suggested that the ion adsorption mechanism even leads to potential formulae identical to the famous Nernst equation or the Goldman-Hodgkin-Katz equation. Our further analysis, presented in this paper, indicates that the potential formula based on the ion adsorption mechanism leads to an equation that is a function of the surface charge density of the material and the surface potential of the material. Furthermore, we have confirmed that the equation holds in all the different experimental systems that we have studied. This equation appears to be a key equation that governs the characteristics of the membrane potential in all systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.