Food-grade titanium dioxide translocates across the buccal mucosa in pigs and induces genotoxicity in an in vitro model of human oral epithelium.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2023-06-01 DOI:10.1080/17435390.2023.2210664
Julien Vignard, Aurelie Pettes-Duler, Eric Gaultier, Christel Cartier, Laurent Weingarten, Antje Biesemeier, Tatjana Taubitz, Philippe Pinton, Cecilia Bebeacua, Laurent Devoille, Jacques Dupuy, Elisa Boutet-Robinet, Nicolas Feltin, Isabelle P Oswald, Fabrice H Pierre, Bruno Lamas, Gladys Mirey, Eric Houdeau
{"title":"Food-grade titanium dioxide translocates across the buccal mucosa in pigs and induces genotoxicity in an <i>in vitro</i> model of human oral epithelium.","authors":"Julien Vignard,&nbsp;Aurelie Pettes-Duler,&nbsp;Eric Gaultier,&nbsp;Christel Cartier,&nbsp;Laurent Weingarten,&nbsp;Antje Biesemeier,&nbsp;Tatjana Taubitz,&nbsp;Philippe Pinton,&nbsp;Cecilia Bebeacua,&nbsp;Laurent Devoille,&nbsp;Jacques Dupuy,&nbsp;Elisa Boutet-Robinet,&nbsp;Nicolas Feltin,&nbsp;Isabelle P Oswald,&nbsp;Fabrice H Pierre,&nbsp;Bruno Lamas,&nbsp;Gladys Mirey,&nbsp;Eric Houdeau","doi":"10.1080/17435390.2023.2210664","DOIUrl":null,"url":null,"abstract":"<p><p>The whitening and opacifying agent titanium dioxide (TiO<sub>2</sub>) is used worldwide in various foodstuffs, toothpastes and pharmaceutical tablets. Its use as a food additive (E171 in EU) has raised concerns for human health. Although the buccal mucosa is the first area exposed, oral transmucosal passage of TiO<sub>2</sub> particles has not been documented. Here we analyzed E171 particle translocation <i>in vivo</i> through the pig buccal mucosa and <i>in vitro</i> on human buccal TR146 cells, and the effects on proliferating and differentiated TR146 cells. In the buccal floor of pigs, isolated TiO<sub>2</sub> particles and small aggregates were observed 30 min after sublingual deposition, and were recovered in the submandibular lymph nodes at 4 h. In TR146 cells, kinetic analyses showed high absorption capacities of TiO<sub>2</sub> particles. The cytotoxicity, genotoxicity and oxidative stress were investigated in TR146 cells exposed to E171 in comparison with two TiO<sub>2</sub> size standards of 115 and 21 nm in diameter. All TiO<sub>2</sub> samples were reported cytotoxic in proliferating cells but not following differentiation. Genotoxicity and slight oxidative stress were reported for the E171 and 115 nm TiO<sub>2</sub> particles. These data highlight the buccal mucosa as an absorption route for the systemic passage of food-grade TiO<sub>2</sub> particles. The greater toxicity on proliferating cells suggest potential impairement of oral epithelium renewal. In conclusion, this study emphasizes that buccal exposure should be considered during toxicokinetic studies and for risk assessment of TiO<sub>2</sub> in human when used as food additive, including in toothpastes and pharmaceutical formulations.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 4","pages":"289-309"},"PeriodicalIF":3.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2023.2210664","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The whitening and opacifying agent titanium dioxide (TiO2) is used worldwide in various foodstuffs, toothpastes and pharmaceutical tablets. Its use as a food additive (E171 in EU) has raised concerns for human health. Although the buccal mucosa is the first area exposed, oral transmucosal passage of TiO2 particles has not been documented. Here we analyzed E171 particle translocation in vivo through the pig buccal mucosa and in vitro on human buccal TR146 cells, and the effects on proliferating and differentiated TR146 cells. In the buccal floor of pigs, isolated TiO2 particles and small aggregates were observed 30 min after sublingual deposition, and were recovered in the submandibular lymph nodes at 4 h. In TR146 cells, kinetic analyses showed high absorption capacities of TiO2 particles. The cytotoxicity, genotoxicity and oxidative stress were investigated in TR146 cells exposed to E171 in comparison with two TiO2 size standards of 115 and 21 nm in diameter. All TiO2 samples were reported cytotoxic in proliferating cells but not following differentiation. Genotoxicity and slight oxidative stress were reported for the E171 and 115 nm TiO2 particles. These data highlight the buccal mucosa as an absorption route for the systemic passage of food-grade TiO2 particles. The greater toxicity on proliferating cells suggest potential impairement of oral epithelium renewal. In conclusion, this study emphasizes that buccal exposure should be considered during toxicokinetic studies and for risk assessment of TiO2 in human when used as food additive, including in toothpastes and pharmaceutical formulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在人口腔上皮体外模型中,食品级二氧化钛在猪的口腔粘膜上易位并诱导遗传毒性。
美白和不透明剂二氧化钛(TiO2)在世界范围内用于各种食品,牙膏和药片。它作为食品添加剂(欧盟称为E171)的使用引起了人们对人类健康的担忧。虽然口腔粘膜是第一个暴露的区域,但TiO2颗粒经口腔粘膜通过尚未有文献记载。本实验分析了E171颗粒在猪口腔黏膜和体外对人口腔TR146细胞的体内易位,以及对TR146细胞增殖和分化的影响。在舌下沉积30 min后,在猪颊底观察到分离的TiO2颗粒和小聚集体,并在4 h时在下颌下淋巴结中恢复。在TR146细胞中,动力学分析表明TiO2颗粒具有较高的吸附能力。研究了E171对TR146细胞的细胞毒性、遗传毒性和氧化应激的影响,并与直径为115和21 nm的TiO2粒径标准进行了比较。所有TiO2样品在增殖细胞中均有细胞毒性,但在分化后无细胞毒性。对E171和115 nm TiO2颗粒进行了遗传毒性和轻度氧化应激实验。这些数据强调了口腔黏膜是食品级TiO2颗粒全身通过的吸收途径。对增殖细胞更大的毒性提示口腔上皮更新的潜在损害。总之,本研究强调,在毒性动力学研究和作为食品添加剂(包括牙膏和药物配方)使用时,应考虑口腔暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Knock-out mouse models and single particle ICP-MS reveal that SP-D and SP-A deficiency reduces agglomeration of inhaled gold nanoparticles in vivo without significant changes to overall lung clearance. Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines. Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model. Probing the effects of dextran-coated CeO2 nanoparticles on lung fibroblasts using multivariate single-cell Raman spectroscopy. Toxicological impact of silver nanoparticles on soil microbial indicators in contaminated soil (pot experiment).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1