Antiviral activity of silver nanoparticles against the influenza A virus

IF 3.5 4区 医学 Q2 IMMUNOLOGY Journal of Virus Eradication Pub Date : 2023-06-01 DOI:10.1016/j.jve.2023.100330
Krystyna Naumenko , Svitlana Zahorodnia , Calin V. Pop , Nodari Rizun
{"title":"Antiviral activity of silver nanoparticles against the influenza A virus","authors":"Krystyna Naumenko ,&nbsp;Svitlana Zahorodnia ,&nbsp;Calin V. Pop ,&nbsp;Nodari Rizun","doi":"10.1016/j.jve.2023.100330","DOIUrl":null,"url":null,"abstract":"<div><p>Viral infections occupy an essential place in modern medicine, particularly a large group of diseases caused by the influenza viruses. They are rapidly transmitted and mutate quickly, which can lead to significant socio-economic consequences. Silver nanoparticles (AgNPs) are considered to be an effective antimicrobial agent. This study shows that they have strong antiviral properties against the influenza A virus infection. Their absence of cytotoxicity at inhibitory concentrations demonstrates that they could be an effective antiviral agent against this virus. As AgNPs inhibit the influenza A virus replication and spread, they could also be successfully used as a post-infection virostatic agent.</p></div>","PeriodicalId":17552,"journal":{"name":"Journal of Virus Eradication","volume":"9 2","pages":"Article 100330"},"PeriodicalIF":3.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/24/main.PMC10319835.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virus Eradication","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S205566402300016X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viral infections occupy an essential place in modern medicine, particularly a large group of diseases caused by the influenza viruses. They are rapidly transmitted and mutate quickly, which can lead to significant socio-economic consequences. Silver nanoparticles (AgNPs) are considered to be an effective antimicrobial agent. This study shows that they have strong antiviral properties against the influenza A virus infection. Their absence of cytotoxicity at inhibitory concentrations demonstrates that they could be an effective antiviral agent against this virus. As AgNPs inhibit the influenza A virus replication and spread, they could also be successfully used as a post-infection virostatic agent.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
银纳米颗粒对甲型流感病毒的抗病毒活性
病毒感染在现代医学中占有重要地位,特别是由流感病毒引起的一大群疾病。它们传播迅速,变异迅速,可能导致严重的社会经济后果。银纳米粒子(AgNPs)被认为是一种有效的抗菌药物。本研究表明,它们对甲型流感病毒感染具有较强的抗病毒特性。它们在抑制浓度下没有细胞毒性,表明它们可能是一种有效的抗病毒药物。由于AgNPs抑制甲型流感病毒的复制和传播,它们也可以成功地用作感染后的病毒抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virus Eradication
Journal of Virus Eradication Medicine-Public Health, Environmental and Occupational Health
CiteScore
6.10
自引率
1.80%
发文量
28
审稿时长
39 weeks
期刊介绍: The Journal of Virus Eradication aims to provide a specialist, open-access forum to publish work in the rapidly developing field of virus eradication. The Journal covers all human viruses, in the context of new therapeutic strategies, as well as societal eradication of viral infections with preventive interventions. The Journal is aimed at the international community involved in the prevention and management of viral infections. It provides an academic forum for the publication of original research into viral reservoirs, viral persistence and virus eradication and ultimately development of cures. The Journal not only publishes original research, but provides an opportunity for opinions, reviews, case studies and comments on the published literature. It focusses on evidence-based medicine as the major thrust in the successful management of viral infections.The Journal encompasses virological, immunological, epidemiological, modelling, pharmacological, pre-clinical and in vitro, as well as clinical, data including but not limited to drugs, immunotherapy and gene therapy. It is an important source of information on the development of vaccine programs and preventative measures aimed at virus eradication.
期刊最新文献
Editorial Board Knowledge and attitude among Bangladeshi healthcare workers regarding the management and infection prevention and control of Nipah virus A comparison of sofosbuvir/velpatasvir and glecaprevir/pibrentasvir for the treatment of hepatitis C infection among people who inject drugs Partner protections in HIV cure-related trials involving analytical treatment interruption: Updated toolkit to mitigate HIV transmission risk Indomethacin inhibits human seasonal coronaviruses at late stages of viral replication in lung cells: Impact on virus-induced COX-2 expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1