Revisiting the pro-oxidant activity of copper: interplay of ascorbate, cysteine, and glutathione.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Metallomics Pub Date : 2023-07-10 DOI:10.1093/mtomcs/mfad040
Enrico Falcone, Francesco Stellato, Bertrand Vileno, Merwan Bouraguba, Vincent Lebrun, Marianne Ilbert, Silvia Morante, Peter Faller
{"title":"Revisiting the pro-oxidant activity of copper: interplay of ascorbate, cysteine, and glutathione.","authors":"Enrico Falcone,&nbsp;Francesco Stellato,&nbsp;Bertrand Vileno,&nbsp;Merwan Bouraguba,&nbsp;Vincent Lebrun,&nbsp;Marianne Ilbert,&nbsp;Silvia Morante,&nbsp;Peter Faller","doi":"10.1093/mtomcs/mfad040","DOIUrl":null,"url":null,"abstract":"<p><p>Copper (Cu) is essential for most organisms, but it can be poisonous in excess, through mechanisms such as protein aggregation, trans-metallation, and oxidative stress. The latter could implicate the formation of potentially harmful reactive oxygen species (O2•-, H2O2, and HO•) via the redox cycling between Cu(II)/Cu(I) states in the presence of dioxygen and physiological reducing agents such as ascorbate (AscH), cysteine (Cys), and the tripeptide glutathione (GSH). Although the reactivity of Cu with these reductants has been previously investigated, the reactions taking place in a more physiologically relevant mixture of these biomolecules are not known. Hence, we report here on the reactivity of Cu with binary and ternary mixtures of AscH, Cys, and GSH. By measuring AscH and thiol oxidation, as well as HO• formation, we show that Cu reacts preferentially with GSH and Cys, halting AscH oxidation and also HO• release. This could be explained by the formation of Cu-thiolate clusters with both GSH and, as we first demonstrate here, Cys. Moreover, we observed a remarkable acceleration of Cu-catalyzed GSH oxidation in the presence of Cys. We provide evidence that both thiol-disulfide exchange and the generated H2O2 contribute to this effect. Based on these findings, we speculate that Cu-induced oxidative stress may be mainly driven by GSH depletion and/or protein disulfide formation rather than by HO• and envision a synergistic effect of Cys on Cu toxicity.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"15 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331802/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Copper (Cu) is essential for most organisms, but it can be poisonous in excess, through mechanisms such as protein aggregation, trans-metallation, and oxidative stress. The latter could implicate the formation of potentially harmful reactive oxygen species (O2•-, H2O2, and HO•) via the redox cycling between Cu(II)/Cu(I) states in the presence of dioxygen and physiological reducing agents such as ascorbate (AscH), cysteine (Cys), and the tripeptide glutathione (GSH). Although the reactivity of Cu with these reductants has been previously investigated, the reactions taking place in a more physiologically relevant mixture of these biomolecules are not known. Hence, we report here on the reactivity of Cu with binary and ternary mixtures of AscH, Cys, and GSH. By measuring AscH and thiol oxidation, as well as HO• formation, we show that Cu reacts preferentially with GSH and Cys, halting AscH oxidation and also HO• release. This could be explained by the formation of Cu-thiolate clusters with both GSH and, as we first demonstrate here, Cys. Moreover, we observed a remarkable acceleration of Cu-catalyzed GSH oxidation in the presence of Cys. We provide evidence that both thiol-disulfide exchange and the generated H2O2 contribute to this effect. Based on these findings, we speculate that Cu-induced oxidative stress may be mainly driven by GSH depletion and/or protein disulfide formation rather than by HO• and envision a synergistic effect of Cys on Cu toxicity.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视铜的促氧化活性:抗坏血酸、半胱氨酸和谷胱甘肽的相互作用。
铜(Cu)对大多数生物都是必需的,但过量的铜会通过蛋白质聚集、金属化和氧化应激等机制产生毒性。后者可能涉及在双氧和生理还原剂(如抗坏血酸(AscH)、半胱氨酸(Cys)和三肽谷胱甘肽(GSH)存在下,通过Cu(II)/Cu(I)状态之间的氧化还原循环,形成潜在有害的活性氧(O2•-、H2O2和HO•)。虽然Cu与这些还原剂的反应性之前已经被研究过,但在这些生物分子的更生理相关的混合物中发生的反应尚不清楚。因此,我们在这里报道了Cu与AscH, Cys和GSH的二元和三元混合物的反应性。通过测量AscH和硫醇氧化以及HO•的形成,我们发现Cu优先与GSH和Cys反应,阻止AscH氧化和HO•释放。这可以通过GSH和Cys形成铜硫酸盐簇来解释。此外,我们观察到在Cys存在下cu催化的谷胱甘肽氧化显著加速。我们提供的证据表明,硫醇-二硫交换和产生的H2O2都有助于这种效果。基于这些发现,我们推测Cu诱导的氧化应激可能主要由GSH耗竭和/或蛋白质二硫化物形成驱动,而不是由HO•驱动,并设想Cys对Cu毒性的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
期刊最新文献
Antisense transcription is associated with expression of metal resistance determinants in Cupriavidus metallidurans CH34. Linking the transcriptome to physiology: response of the proteome of cupriavidus metallidurans to changing metal availability. Natural variation of magnesium stable isotopes in human kidney stones. Formation mechanism of iron-catechol complexes in the colored periostracum of Corbicula spp. X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1