Huishan Shen , Mengting Yan , Xinyue Liu , Xiangzhen Ge , Jie Zeng , Haiyan Gao , Guoquan Zhang , Wenhao Li
{"title":"Wheat starch particle size distribution regulates the dynamic transition behavior of gluten at different stages of dough mixing","authors":"Huishan Shen , Mengting Yan , Xinyue Liu , Xiangzhen Ge , Jie Zeng , Haiyan Gao , Guoquan Zhang , Wenhao Li","doi":"10.1016/j.ijbiomac.2023.125371","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the morphology distribution, molecular structure, and aggregative properties variation of gluten protein during dough mixing stage and interpreted the interaction between starch with different sizes and protein. Research results indicated that mixing process induced glutenin<span> macropolymer depolymerization<span>, and promoted the monomeric protein conversion into the polymeric protein. Appropriate mixing (9 min) enhanced the interaction between wheat starch with different particle sizes and gluten protein. Confocal laser scanning microscopy<span> images showed that a moderate increase in B-starch content in the dough system contributed to forming a more continuous, dense, and ordered gluten network. The 50A-50B and 25A-75B doughs mixed for 9 min exhibited a dense gluten network, and the arrangement of A-/B-starch granules and gluten was tight and ordered. The addition of B-starch increased α-helixes, β-turns, and random coil structure. Farinographic properties indicated that 25A-75B composite flour had the highest dough stability time and the lowest degree of softening. The 25A-75B noodle displayed maximum hardness, cohesiveness, chewiness, and tensile strength. The correlation analysis indicated that starch particle size distribution could influence noodle quality by changing the gluten network. The paper can provide theoretical support for regulating dough characteristics by adjusting the starch granule size distribution.</span></span></span></p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"244 ","pages":"Article 125371"},"PeriodicalIF":7.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813023022651","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
This study investigated the morphology distribution, molecular structure, and aggregative properties variation of gluten protein during dough mixing stage and interpreted the interaction between starch with different sizes and protein. Research results indicated that mixing process induced glutenin macropolymer depolymerization, and promoted the monomeric protein conversion into the polymeric protein. Appropriate mixing (9 min) enhanced the interaction between wheat starch with different particle sizes and gluten protein. Confocal laser scanning microscopy images showed that a moderate increase in B-starch content in the dough system contributed to forming a more continuous, dense, and ordered gluten network. The 50A-50B and 25A-75B doughs mixed for 9 min exhibited a dense gluten network, and the arrangement of A-/B-starch granules and gluten was tight and ordered. The addition of B-starch increased α-helixes, β-turns, and random coil structure. Farinographic properties indicated that 25A-75B composite flour had the highest dough stability time and the lowest degree of softening. The 25A-75B noodle displayed maximum hardness, cohesiveness, chewiness, and tensile strength. The correlation analysis indicated that starch particle size distribution could influence noodle quality by changing the gluten network. The paper can provide theoretical support for regulating dough characteristics by adjusting the starch granule size distribution.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.