Development of electronic sum frequency generation spectrophotometer to assess the buried interfaces.

IF 1.6 4区 医学 Q4 BIOPHYSICS Biointerphases Pub Date : 2023-07-01 DOI:10.1116/6.0002697
Suman Dhami, Yogesh Kumar, Ravindra Pandey
{"title":"Development of electronic sum frequency generation spectrophotometer to assess the buried interfaces.","authors":"Suman Dhami, Yogesh Kumar, Ravindra Pandey","doi":"10.1116/6.0002697","DOIUrl":null,"url":null,"abstract":"<p><p>The interfacial region between two bulk media in organic semiconductor based devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes, and organic photovoltaics, refers to the region where two different materials such as an organic material and an electrode come in contact with each other. Although the interfacial region contains a significantly smaller fraction of molecules compared to the bulk, it is the primary site where many photoinduced excited state processes occur, such as charge transfer, charge recombination, separation, energy transfer processes, etc. All such photoinduced processes have a dependence on molecular orientation and density of states at the interfaces, therefore having an understanding of the interfacial region is essential. However, conventional spectroscopic techniques, such as surface-enhanced Raman scattering, x-ray photoelectron spectroscopy, atomic force microscopy, etc., face limitations in probing the orientation and density of states of interfacial molecules. Therefore, there is a need for noninvasive techniques capable of efficiently investigating the interfaces. The electronic sum frequency generation (ESFG) technique offers an interface selectivity based on the principle that the second-order nonlinear susceptibility tensor, within the electric dipole approximation, is zero in the isotropic bulk but nonzero at interfaces. This selectivity makes ESFG a promising spectroscopy tool to probe the molecular orientation and density of states at the buried interface. For beginners interested in employing ESFG to study the density of states at the interface, a detailed description of the experimental setup is provided here.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002697","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

The interfacial region between two bulk media in organic semiconductor based devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes, and organic photovoltaics, refers to the region where two different materials such as an organic material and an electrode come in contact with each other. Although the interfacial region contains a significantly smaller fraction of molecules compared to the bulk, it is the primary site where many photoinduced excited state processes occur, such as charge transfer, charge recombination, separation, energy transfer processes, etc. All such photoinduced processes have a dependence on molecular orientation and density of states at the interfaces, therefore having an understanding of the interfacial region is essential. However, conventional spectroscopic techniques, such as surface-enhanced Raman scattering, x-ray photoelectron spectroscopy, atomic force microscopy, etc., face limitations in probing the orientation and density of states of interfacial molecules. Therefore, there is a need for noninvasive techniques capable of efficiently investigating the interfaces. The electronic sum frequency generation (ESFG) technique offers an interface selectivity based on the principle that the second-order nonlinear susceptibility tensor, within the electric dipole approximation, is zero in the isotropic bulk but nonzero at interfaces. This selectivity makes ESFG a promising spectroscopy tool to probe the molecular orientation and density of states at the buried interface. For beginners interested in employing ESFG to study the density of states at the interface, a detailed description of the experimental setup is provided here.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子和频产生分光光度计的研制。
在基于有机半导体的器件中,如有机场效应晶体管(ofet)、有机发光二极管和有机光伏中,两种大块介质之间的界面区域是指两种不同材料(如有机材料和电极)相互接触的区域。虽然界面区所含的分子比体区要少得多,但它是许多光致激发态过程发生的主要场所,如电荷转移、电荷重组、分离、能量转移过程等。所有这些光诱导过程都依赖于界面上的分子取向和态密度,因此了解界面区域是必不可少的。然而,传统的光谱技术,如表面增强拉曼散射、x射线光电子能谱、原子力显微镜等,在探测界面分子的取向和状态密度方面存在局限性。因此,需要能够有效地研究接口的非侵入性技术。电子和频生成(ESFG)技术提供了一种基于二阶非线性磁化率张量原理的界面选择性,在电偶极近似下,各向同性体中为零,而在界面处为非零。这种选择性使ESFG成为一种很有前途的光谱工具,用于探测埋藏界面处的分子取向和状态密度。对于有兴趣使用ESFG来研究界面态密度的初学者,这里提供了实验设置的详细描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Influence of metal oxides on biocompatibility of additively manufactured NiTi. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins. Adsorption of cytochrome c on different self-assembled monolayers: The role of surface chemistry and charge density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1