Song Tan, Juan Li, Qiao Yang, Jinzhong Fu, Jingfeng Chen
{"title":"Light/dark phase influences intra-individual plasticity in maintenance metabolic rate and exploratory behavior independently in the Asiatic toad.","authors":"Song Tan, Juan Li, Qiao Yang, Jinzhong Fu, Jingfeng Chen","doi":"10.1186/s40850-022-00139-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is well-known that light/dark phase can affect energy expenditure and behaviors of most organisms; however, its influences on individuality (inter-individual variance) and plasticity (intra-individual variance), as well as their associations remain unclear. To approach this question, we repeatedly measured maintenance metabolic rate (MR), exploratory and risk-taking behaviors across light/dark phase four times using wild-caught female Asiatic toads (Bufo gargarizans), and partitioned their variance components with univariate and bivariate mixed-effects models.</p><p><strong>Results: </strong>The group means of maintenance MR and risk-taking behavior increased at night, while the group mean of exploratory behavior remained constant throughout the day. At night, the intra-individual variances were elevated in maintenance MR but reduced in exploration, suggesting that phenotypic plasticity was enhanced in the former but constrained in the latter. In addition, maintenance MR was not coupled with exploratory or risk-taking behaviors in daytime or at night, neither at the inter-individual nor intra-individual levels.</p><p><strong>Conclusions: </strong>Our findings suggest that these traits are independently modulated by the light/dark phase, and an allocation energy management model may be applicable in this species. This study sheds new insights into how amphibians adapt nocturnal lifestyle across multiple hierarchy levels via metabolic and behavioral adjustments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127016/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40850-022-00139-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: It is well-known that light/dark phase can affect energy expenditure and behaviors of most organisms; however, its influences on individuality (inter-individual variance) and plasticity (intra-individual variance), as well as their associations remain unclear. To approach this question, we repeatedly measured maintenance metabolic rate (MR), exploratory and risk-taking behaviors across light/dark phase four times using wild-caught female Asiatic toads (Bufo gargarizans), and partitioned their variance components with univariate and bivariate mixed-effects models.
Results: The group means of maintenance MR and risk-taking behavior increased at night, while the group mean of exploratory behavior remained constant throughout the day. At night, the intra-individual variances were elevated in maintenance MR but reduced in exploration, suggesting that phenotypic plasticity was enhanced in the former but constrained in the latter. In addition, maintenance MR was not coupled with exploratory or risk-taking behaviors in daytime or at night, neither at the inter-individual nor intra-individual levels.
Conclusions: Our findings suggest that these traits are independently modulated by the light/dark phase, and an allocation energy management model may be applicable in this species. This study sheds new insights into how amphibians adapt nocturnal lifestyle across multiple hierarchy levels via metabolic and behavioral adjustments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.