Fast-track preparation of lung specimens for electron microscope observations of the pulmonary endothelial glycocalyx.

IF 1.2 4区 医学 Q3 PATHOLOGY Medical Molecular Morphology Pub Date : 2023-12-01 Epub Date: 2023-07-05 DOI:10.1007/s00795-023-00360-1
Mone Wakatsuki, Takashi Takaki, Akira Ushiyama, Kazuho Honda, Takehiko Iijima
{"title":"Fast-track preparation of lung specimens for electron microscope observations of the pulmonary endothelial glycocalyx.","authors":"Mone Wakatsuki, Takashi Takaki, Akira Ushiyama, Kazuho Honda, Takehiko Iijima","doi":"10.1007/s00795-023-00360-1","DOIUrl":null,"url":null,"abstract":"<p><p>The glycocalyx (GCX) covers the luminal surface of blood vessels and regulates vascular permeability. As GCX degradation predicts various types of vasculopathy, confirming the presence of this structure is useful for diagnosis. Since the GCX layer is very fragile, careful fixation is necessary to preserve its structure. We explored appropriate and feasible methodologies for visualizing the GCX layer using lung tissue specimens excised from anesthetized mice. Each specimen was degassed and immersed in Alcian blue (ALB) fixative solution, and then observed using electron microscopy. Specimens from septic mice were prepared as negative GCX controls. Using these immersion-fixed specimens, the GCX layer was successfully observed using both transmission and scanning electron microscopy; these observations were similar to those obtained using the conventional method of lanthanum perfusion fixation. Spherical aggregates of GCX were observed in the septic mouse specimens, and the GCX density was lower in the septic specimens than in the non-septic specimens. Of note, the presently reported methodology reduced the specimen preparation time from 6 to 2 days. We, therefore, concluded that our novel method could be applied to human lung specimens and could potentially contribute to the further elucidation of vasculopathies.</p>","PeriodicalId":18338,"journal":{"name":"Medical Molecular Morphology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00795-023-00360-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The glycocalyx (GCX) covers the luminal surface of blood vessels and regulates vascular permeability. As GCX degradation predicts various types of vasculopathy, confirming the presence of this structure is useful for diagnosis. Since the GCX layer is very fragile, careful fixation is necessary to preserve its structure. We explored appropriate and feasible methodologies for visualizing the GCX layer using lung tissue specimens excised from anesthetized mice. Each specimen was degassed and immersed in Alcian blue (ALB) fixative solution, and then observed using electron microscopy. Specimens from septic mice were prepared as negative GCX controls. Using these immersion-fixed specimens, the GCX layer was successfully observed using both transmission and scanning electron microscopy; these observations were similar to those obtained using the conventional method of lanthanum perfusion fixation. Spherical aggregates of GCX were observed in the septic mouse specimens, and the GCX density was lower in the septic specimens than in the non-septic specimens. Of note, the presently reported methodology reduced the specimen preparation time from 6 to 2 days. We, therefore, concluded that our novel method could be applied to human lung specimens and could potentially contribute to the further elucidation of vasculopathies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速制备肺标本,用于电镜观察肺内皮糖萼。
糖萼(GCX)覆盖血管腔面,调节血管通透性。由于GCX降解可预测各种类型的血管病变,因此确认该结构的存在对诊断是有用的。由于GCX层非常脆弱,必须小心固定以保持其结构。我们探索了使用麻醉小鼠肺组织标本观察GCX层的合适可行方法。每个标本脱气,浸泡在Alcian blue (ALB)固定液中,然后用电镜观察。脓毒症小鼠标本作为GCX阴性对照。利用这些浸泡固定的样品,用透射电镜和扫描电镜成功地观察了GCX层;这些观察结果与传统的镧灌注固定方法相似。在脓毒症小鼠标本中观察到GCX的球形聚集体,脓毒症小鼠标本中的GCX密度低于非脓毒症小鼠标本。值得注意的是,目前报告的方法将标本制备时间从6天减少到2天。因此,我们得出结论,我们的新方法可以应用于人类肺标本,并可能有助于进一步阐明血管病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Molecular Morphology
Medical Molecular Morphology 医学-病理学
CiteScore
2.90
自引率
5.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: Medical Molecular Morphology is an international forum for researchers in both basic and clinical medicine to present and discuss new research on the structural mechanisms and the processes of health and disease at the molecular level. The structures of molecules, organelles, cells, tissues, and organs determine their normal function. Disease is thus best understood in terms of structural changes in these different levels of biological organization, especially in molecules and molecular interactions as well as the cellular localization of chemical components. Medical Molecular Morphology welcomes articles on basic or clinical research in the fields of cell biology, molecular biology, and medical, veterinary, and dental sciences using techniques for structural research such as electron microscopy, confocal laser scanning microscopy, enzyme histochemistry, immunohistochemistry, radioautography, X-ray microanalysis, and in situ hybridization. Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.
期刊最新文献
Correction: Comprehensive analysis of transcription factors involved in odontoblast differentiation mechanism. High ambient temperature may induce presbyopia via TRPV1 activation. Comprehensive analysis of transcription factors involved in odontoblast differentiation mechanism. Nodal T follicular helper cell lymphoma with aberrant CD20 expression and monoclonal TCR, IG rearrangements secondary to Classical Hodgkin Lymphoma: a case report. Expression of miR-34a, RASSF1A and E-cadherin in relation to PRB in endometrioid carcinoma and its precursor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1