Inteligencia artificial en la colonoscopia de tamizaje y la disminución del error.

IF 0.5 4区 医学 Q4 SURGERY Cirugia Y Cirujanos Pub Date : 2023-01-01 DOI:10.24875/CIRU.22000446
Elymir Galvis-García, Francisco J de la Vega-González, Fabian Emura, Óscar Teramoto-Matsubara, Juan C Sánchez-Robles, Gonzalo Rodríguez-Vanegas, Sergio Sobrino-Cossío
{"title":"Inteligencia artificial en la colonoscopia de tamizaje y la disminución del error.","authors":"Elymir Galvis-García,&nbsp;Francisco J de la Vega-González,&nbsp;Fabian Emura,&nbsp;Óscar Teramoto-Matsubara,&nbsp;Juan C Sánchez-Robles,&nbsp;Gonzalo Rodríguez-Vanegas,&nbsp;Sergio Sobrino-Cossío","doi":"10.24875/CIRU.22000446","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) has the potential to change many aspects of healthcare practice. Image discrimination and classification has many applications within medicine. Machine learning algorithms and complicated neural networks have been developed to train a computer to differentiate between normal and abnormal areas. Machine learning is a form of AI that allows the platform to improve without being programmed. Computer Assisted Diagnosis (CAD) is based on latency, which is the time between the captured image and when it is displayed on the screen. AI-assisted endoscopy can increase the detection rate by identifying missed lesions. An AI CAD system must be responsive, specific, with easy-to-use interfaces, and provide fast results without substantially prolonging procedures. AI has the potential to help both, trained and trainee endoscopists. Rather than being a substitute for high-quality technique, it should serve as a complement to good practice. AI has been evaluated in three clinical scenarios in colonic neoplasms: the detection of polyps, their characterization (adenomatous vs. non-adenomatous) and the prediction of invasive cancer within a polypoid lesion.</p>","PeriodicalId":50990,"journal":{"name":"Cirugia Y Cirujanos","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirugia Y Cirujanos","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.24875/CIRU.22000446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) has the potential to change many aspects of healthcare practice. Image discrimination and classification has many applications within medicine. Machine learning algorithms and complicated neural networks have been developed to train a computer to differentiate between normal and abnormal areas. Machine learning is a form of AI that allows the platform to improve without being programmed. Computer Assisted Diagnosis (CAD) is based on latency, which is the time between the captured image and when it is displayed on the screen. AI-assisted endoscopy can increase the detection rate by identifying missed lesions. An AI CAD system must be responsive, specific, with easy-to-use interfaces, and provide fast results without substantially prolonging procedures. AI has the potential to help both, trained and trainee endoscopists. Rather than being a substitute for high-quality technique, it should serve as a complement to good practice. AI has been evaluated in three clinical scenarios in colonic neoplasms: the detection of polyps, their characterization (adenomatous vs. non-adenomatous) and the prediction of invasive cancer within a polypoid lesion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在结肠镜筛查和减少误差中的应用。
人工智能(AI)有可能改变医疗保健实践的许多方面。图像识别和分类在医学中有许多应用。机器学习算法和复杂的神经网络已经被开发出来,用来训练计算机区分正常和异常区域。机器学习是人工智能的一种形式,它允许平台在没有编程的情况下进行改进。计算机辅助诊断(CAD)基于延迟,即从捕获图像到显示在屏幕上的时间。人工智能辅助内镜可以通过识别漏诊病变来提高检出率。一个人工智能CAD系统必须反应灵敏,具体,具有易于使用的界面,并提供快速的结果,而不会大大延长程序。人工智能有潜力帮助训练有素和见习的内窥镜医师。它不应该作为高质量技术的替代品,而应该作为良好实践的补充。人工智能在结肠肿瘤的三种临床情况下进行了评估:息肉的检测,其特征(腺瘤性与非腺瘤性)以及息肉样病变内浸润性癌症的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cirugia Y Cirujanos
Cirugia Y Cirujanos 医学-外科
CiteScore
0.90
自引率
20.00%
发文量
207
审稿时长
6-12 weeks
期刊介绍: Cirugía y Cirujanoses exponente del desarrollo académico, científico, médico, quirúrgico y tecnológico en materia de salud en México y en el ámbito internacional. Es una revista bimestral, open access, revisada por pares, que publica en español y en inglés (traducido sin coste para los autores) artículos científicos originales, casos clínicos, artículos de revisión de interés general y cartas al editor. Los artículos se seleccionan y publican siguiendo un riguroso análisis, de acuerdo con los estándares internacionalmente aceptados. Sus espacios están abiertos a los académicos, así como a todo miembro de la comunidad médica que manifieste interés por utilizar este foro para publicar sus trabajos.
期刊最新文献
Clinical outcomes and radiological assessment of vascular anatomy in patients who underwent D3 left hemicolectomy. A model to determine factors influencing intraoperative complications in sleeve gastrectomy. [Extremity soft tissue sarcoma: does surgical margin impact survival?] Relación preoperatoria de neutrófilos a proteína C reactiva como predictor de complicaciones posoperatorias del cáncer de pancreas ¿La vía de señalización de sonic hedgehog desempeña un papel en el mecanismo antirreflujo de la vejiga en los niños?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1