Cyril H Melikov, Jacob J Bukoski, Susan C Cook-Patton, Hongyi Ban, Jessica L Chen, Matthew D Potts
{"title":"Quantifying the Effect Size of Management Actions on Aboveground Carbon Stocks in Forest Plantations.","authors":"Cyril H Melikov, Jacob J Bukoski, Susan C Cook-Patton, Hongyi Ban, Jessica L Chen, Matthew D Potts","doi":"10.1007/s40725-023-00182-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of the review: </strong>Improved forest management is a promising avenue for climate change mitigation. However, we lack synthetic understanding of how different management actions impact aboveground carbon stocks, particularly at scales relevant for designing and implementing forest-based climate solutions. Here, we quantitatively assess and review the impacts of three common practices-application of inorganic NPK fertilizer, interplanting with N-fixing species, and thinning-on aboveground carbon stocks in plantation forests.</p><p><strong>Recent findings: </strong>Site-level empirical studies show both positive and negative effects of inorganic fertilization, interplanting, and thinning on aboveground carbon stocks in plantation forests. Recent findings and the results of our analysis suggest that these effects are heavily moderated by factors such as species selection, precipitation, time since practice, soil moisture regime, and previous land use. Interplanting of N-fixing crops initially has no effect on carbon storage in main tree crops, but the effect becomes positive in older stands. Conversely, the application of NPK fertilizers increases aboveground carbon stocks, though the effect lessens with time. Moreover, increases in aboveground carbon stocks may be partially or completely offset by emissions from the application of inorganic fertilizer. Thinning results in a strong reduction of aboveground carbon stocks, though the effect lessens with time.</p><p><strong>Summary: </strong>Management practices tend to have strong directional effects on aboveground carbon stocks in plantation forests but are moderated by site-specific management, climatic, and edaphic factors. The effect sizes quantified in our meta-analysis can serve as benchmarks for the design and scoping of improved forest management projects as forest-based climate solutions. Overall, management actions can enhance the climate mitigation potential of plantation forests, if performed with sufficient attention to the nuances of local conditions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40725-023-00182-5.</p>","PeriodicalId":48653,"journal":{"name":"Current Forestry Reports","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328870/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Forestry Reports","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s40725-023-00182-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose of the review: Improved forest management is a promising avenue for climate change mitigation. However, we lack synthetic understanding of how different management actions impact aboveground carbon stocks, particularly at scales relevant for designing and implementing forest-based climate solutions. Here, we quantitatively assess and review the impacts of three common practices-application of inorganic NPK fertilizer, interplanting with N-fixing species, and thinning-on aboveground carbon stocks in plantation forests.
Recent findings: Site-level empirical studies show both positive and negative effects of inorganic fertilization, interplanting, and thinning on aboveground carbon stocks in plantation forests. Recent findings and the results of our analysis suggest that these effects are heavily moderated by factors such as species selection, precipitation, time since practice, soil moisture regime, and previous land use. Interplanting of N-fixing crops initially has no effect on carbon storage in main tree crops, but the effect becomes positive in older stands. Conversely, the application of NPK fertilizers increases aboveground carbon stocks, though the effect lessens with time. Moreover, increases in aboveground carbon stocks may be partially or completely offset by emissions from the application of inorganic fertilizer. Thinning results in a strong reduction of aboveground carbon stocks, though the effect lessens with time.
Summary: Management practices tend to have strong directional effects on aboveground carbon stocks in plantation forests but are moderated by site-specific management, climatic, and edaphic factors. The effect sizes quantified in our meta-analysis can serve as benchmarks for the design and scoping of improved forest management projects as forest-based climate solutions. Overall, management actions can enhance the climate mitigation potential of plantation forests, if performed with sufficient attention to the nuances of local conditions.
Supplementary information: The online version contains supplementary material available at 10.1007/s40725-023-00182-5.
Current Forestry ReportsAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
15.90
自引率
2.10%
发文量
22
期刊介绍:
Current Forestry Reports features in-depth review articles written by global experts on significant advancements in forestry. Its goal is to provide clear, insightful, and balanced contributions that highlight and summarize important topics for forestry researchers and managers.
To achieve this, the journal appoints international authorities as Section Editors in various key subject areas like physiological processes, tree genetics, forest management, remote sensing, and wood structure and function. These Section Editors select topics for which leading experts contribute comprehensive review articles that focus on new developments and recently published papers of great importance. Moreover, an international Editorial Board evaluates the yearly table of contents, suggests articles of special interest to their specific country or region, and ensures that the topics are up-to-date and include emerging research.