Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes.

IF 5.3 2区 医学 Q2 CELL BIOLOGY Skeletal Muscle Pub Date : 2023-07-12 DOI:10.1186/s13395-023-00321-3
Tea Shavlakadze, Kun Xiong, Shawn Mishra, Corissa McEwen, Abhilash Gadi, Matthew Wakai, Hunter Salmon, Michael J Stec, Nicole Negron, Min Ni, Yi Wei, Gurinder S Atwal, Yu Bai, David J Glass
{"title":"Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes.","authors":"Tea Shavlakadze,&nbsp;Kun Xiong,&nbsp;Shawn Mishra,&nbsp;Corissa McEwen,&nbsp;Abhilash Gadi,&nbsp;Matthew Wakai,&nbsp;Hunter Salmon,&nbsp;Michael J Stec,&nbsp;Nicole Negron,&nbsp;Min Ni,&nbsp;Yi Wei,&nbsp;Gurinder S Atwal,&nbsp;Yu Bai,&nbsp;David J Glass","doi":"10.1186/s13395-023-00321-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as \"sarcopenia\". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models.</p><p><strong>Methods and results: </strong>To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse.</p><p><strong>Conclusions: </strong>This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337157/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-023-00321-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Background: As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models.

Methods and results: To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse.

Conclusions: This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自小鼠和大鼠肢体骨骼肌和横膈膜的年龄相关基因表达特征揭示了共同和物种特异性的变化。
背景:作为衰老的结果,骨骼肌经历萎缩和功能下降。这种与年龄有关的骨骼肌无力被称为“肌肉减少症”。肌肉减少症是人类虚弱的一部分。为了发现肌肉减少症的治疗方法,有必要确定合适的临床前模型以及这些模型中随年龄变化的基因和信号通路。方法和结果:为了了解骨骼肌衰老导致的基因表达变化,我们在小鼠和大鼠的整个生命周期中生成了多个时间点的基因表达特征,因为这些是临床前研究和干预试验中最常用的物种。在6、12、18、21、24和27月龄时,对雄性和雌性C57Bl/6J小鼠和雄性Sprague Dawley大鼠的腓肠肌、胫骨前肌、比目鱼肌和膈肌进行分析,另外9月龄组为大鼠。与小鼠相比,在大鼠骨骼肌中发现了更多与年龄相关的基因;这与大鼠肌肉经历更强劲的与年龄相关的质量下降的发现是一致的。在这两个物种中,与先天免疫和炎症相关的途径随着年龄的增长呈线性增加。与细胞外基质重塑相关的通路也普遍下调。有趣的是,晚期下调通路只在大鼠肢体肌肉中发现,这些通路与代谢和线粒体呼吸有关;这在老鼠身上没有发现。结论:这种广泛的、并排的转录组分析表明,与小鼠相比,大鼠的骨骼肌受衰老的影响更大,而且大鼠的衰退模式可能更能代表人类。观察到的变化指出了潜在的治疗干预措施,以避免骨骼肌功能与年龄相关的衰退。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Skeletal Muscle
Skeletal Muscle CELL BIOLOGY-
CiteScore
9.10
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊介绍: The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators. Main areas of interest include: -differentiation of skeletal muscle- atrophy and hypertrophy of skeletal muscle- aging of skeletal muscle- regeneration and degeneration of skeletal muscle- biology of satellite and satellite-like cells- dystrophic degeneration of skeletal muscle- energy and glucose homeostasis in skeletal muscle- non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies- maintenance of neuromuscular junctions- roles of ryanodine receptors and calcium signaling in skeletal muscle- roles of nuclear receptors in skeletal muscle- roles of GPCRs and GPCR signaling in skeletal muscle- other relevant aspects of skeletal muscle biology. In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission. Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.
期刊最新文献
Spiny mice are primed but fail to regenerate volumetric skeletal muscle loss injuries. Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise. Metabolic pathways for removing reactive aldehydes are diminished in the skeletal muscle during heart failure. Exercise, disease state and sex influence the beneficial effects of Fn14-depletion on survival and muscle pathology in the SOD1G93A amyotrophic lateral sclerosis (ALS) mouse model. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1