metapack: An R Package for Bayesian Meta-Analysis and Network Meta-Analysis with a Unified Formula Interface.

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2022-09-01 Epub Date: 2022-12-19 DOI:10.32614/rj-2022-047
Daeyoung Lim, Ming-Hui Chen, Joseph G Ibrahim, Sungduk Kim, Arvind K Shah, Jianxin Lin
{"title":"metapack: An R Package for Bayesian Meta-Analysis and Network Meta-Analysis with a Unified Formula Interface.","authors":"Daeyoung Lim, Ming-Hui Chen, Joseph G Ibrahim, Sungduk Kim, Arvind K Shah, Jianxin Lin","doi":"10.32614/rj-2022-047","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-analysis, a statistical procedure that compares, combines, and synthesizes research findings from multiple studies in a principled manner, has become popular in a variety of fields. Meta-analyses using study-level (or equivalently <i>aggregate</i>) data are of particular interest due to data availability and modeling flexibility. In this paper, we describe an R package <b>metapack</b> that introduces a unified formula interface for both meta-analysis and network meta-analysis. The user interface-and therefore the package-allows flexible variance-covariance modeling for multivariate meta-analysis models and univariate network meta-analysis models. Complicated computing for these models has prevented their widespread adoption. The package also provides functions to generate relevant plots and perform statistical inferences like model assessments. Use cases are demonstrated using two real data sets contained in <b>metapack</b>.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"14 3","pages":"142-161"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168678/pdf/nihms-1894279.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2022-047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Meta-analysis, a statistical procedure that compares, combines, and synthesizes research findings from multiple studies in a principled manner, has become popular in a variety of fields. Meta-analyses using study-level (or equivalently aggregate) data are of particular interest due to data availability and modeling flexibility. In this paper, we describe an R package metapack that introduces a unified formula interface for both meta-analysis and network meta-analysis. The user interface-and therefore the package-allows flexible variance-covariance modeling for multivariate meta-analysis models and univariate network meta-analysis models. Complicated computing for these models has prevented their widespread adoption. The package also provides functions to generate relevant plots and perform statistical inferences like model assessments. Use cases are demonstrated using two real data sets contained in metapack.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
metapack:带有统一公式界面的贝叶斯元分析和网络元分析 R 软件包。
元分析(Meta-analysis)是一种统计程序,它以一种有原则的方式对多项研究的结果进行比较、组合和综合,已在多个领域流行起来。由于数据的可用性和建模的灵活性,使用研究水平(或等同于汇总)数据进行元分析尤其受到关注。在本文中,我们介绍了一个 R 软件包 metapack,它为元分析和网络元分析引入了统一的公式界面。该用户界面以及该软件包允许对多元元分析模型和单变量网络元分析模型进行灵活的方差-协方差建模。这些模型的复杂计算阻碍了它们的广泛应用。该软件包还提供了生成相关图表和执行统计推断(如模型评估)的功能。使用 metapack 中包含的两个真实数据集演示了使用案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1