Assessing consciousness in patients with disorders of consciousness using soft-clustering.

Q1 Computer Science Brain Informatics Pub Date : 2023-07-14 DOI:10.1186/s40708-023-00197-5
Sophie Adama, Martin Bogdan
{"title":"Assessing consciousness in patients with disorders of consciousness using soft-clustering.","authors":"Sophie Adama,&nbsp;Martin Bogdan","doi":"10.1186/s40708-023-00197-5","DOIUrl":null,"url":null,"abstract":"<p><p>Consciousness is something we experience in our everyday life, more especially between the time we wake up in the morning and go to sleep at night, but also during the rapid eye movement (REM) sleep stage. Disorders of consciousness (DoC) are states in which a person's consciousness is damaged, possibly after a traumatic brain injury. Completely locked-in syndrome (CLIS) patients, on the other hand, display covert states of consciousness. Although they appear unconscious, their cognitive functions are mostly intact. Only, they cannot externally display it due to their quadriplegia and inability to speak. Determining these patients' states constitutes a challenging task. The ultimate goal of the approach presented in this paper is to assess these CLIS patients consciousness states. EEG data from DoC patients are used here first, under the assumption that if the proposed approach is able to accurately assess their consciousness states, it will assuredly do so on CLIS patients too. This method combines different sets of features consisting of spectral, complexity and connectivity measures in order to increase the probability of correctly estimating their consciousness levels. The obtained results showed that the proposed approach was able to correctly estimate several DoC patients' consciousness levels. This estimation is intended as a step prior attempting to communicate with them, in order to maximise the efficiency of brain-computer interfaces (BCI)-based communication systems.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348975/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00197-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Consciousness is something we experience in our everyday life, more especially between the time we wake up in the morning and go to sleep at night, but also during the rapid eye movement (REM) sleep stage. Disorders of consciousness (DoC) are states in which a person's consciousness is damaged, possibly after a traumatic brain injury. Completely locked-in syndrome (CLIS) patients, on the other hand, display covert states of consciousness. Although they appear unconscious, their cognitive functions are mostly intact. Only, they cannot externally display it due to their quadriplegia and inability to speak. Determining these patients' states constitutes a challenging task. The ultimate goal of the approach presented in this paper is to assess these CLIS patients consciousness states. EEG data from DoC patients are used here first, under the assumption that if the proposed approach is able to accurately assess their consciousness states, it will assuredly do so on CLIS patients too. This method combines different sets of features consisting of spectral, complexity and connectivity measures in order to increase the probability of correctly estimating their consciousness levels. The obtained results showed that the proposed approach was able to correctly estimate several DoC patients' consciousness levels. This estimation is intended as a step prior attempting to communicate with them, in order to maximise the efficiency of brain-computer interfaces (BCI)-based communication systems.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用软聚类评价意识障碍患者的意识。
意识是我们在日常生活中体验到的东西,尤其是在我们早上醒来和晚上入睡之间,以及在快速眼动睡眠阶段。意识障碍(DoC)是一个人的意识受损的状态,可能是在创伤性脑损伤之后。另一方面,完全闭锁综合征(CLIS)患者表现出隐蔽的意识状态。虽然他们看起来是无意识的,但他们的认知功能基本完好无损。只是,由于四肢瘫痪和无法说话,他们无法对外展示。确定这些患者的状态是一项具有挑战性的任务。本文提出的方法的最终目标是评估这些CLIS患者的意识状态。本文首先使用DoC患者的脑电图数据,假设如果所提出的方法能够准确地评估他们的意识状态,那么它肯定也适用于CLIS患者。该方法结合了不同的特征集,包括光谱、复杂性和连通性,以提高正确估计其意识水平的概率。结果表明,该方法能够正确估计多例DoC患者的意识水平。为了最大限度地提高基于脑机接口(BCI)的通信系统的效率,这种估计是试图与它们通信之前的一个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1