The effects of chronic high-dose morphine on microgliosis and the microglial transcriptome in rat spinal cord.

IF 2.8 3区 医学 Q2 NEUROSCIENCES Molecular Pain Pub Date : 2023-01-01 DOI:10.1177/17448069231183902
Fredrik H G Ahlstrà M, Hanna Viisanen, Leena Karhinen, Kert Mã Tlik, Kim J Blomqvist, Tuomas Lilius, Yulia A Sidorova, Vinko Palada, Pekka Rauhala, Eija Kalso
{"title":"The effects of chronic high-dose morphine on microgliosis and the microglial transcriptome in rat spinal cord.","authors":"Fredrik H G Ahlstrà M,&nbsp;Hanna Viisanen,&nbsp;Leena Karhinen,&nbsp;Kert Mã Tlik,&nbsp;Kim J Blomqvist,&nbsp;Tuomas Lilius,&nbsp;Yulia A Sidorova,&nbsp;Vinko Palada,&nbsp;Pekka Rauhala,&nbsp;Eija Kalso","doi":"10.1177/17448069231183902","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. <b>Experimental Approach:</b> In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. <b>Key Results:</b> Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm<i>,</i> apoptosis, and immune system processes. <b>Conclusions:</b> Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (<i>Per2, Per3, Dbp</i>). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231183902"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231183902","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. Experimental Approach: In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. Key Results: Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm, apoptosis, and immune system processes. Conclusions: Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (Per2, Per3, Dbp). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢性大剂量吗啡对大鼠脊髓小胶质细胞增生及小胶质细胞转录组的影响。
背景:阿片类药物短期用于急性疼痛是有效和安全的镇痛药物,但长期使用可导致耐受性和依赖性。阿片诱导的小胶质细胞激活可能有助于耐受性的发展,这一过程可能在男性和女性之间有所不同。这种小胶质细胞的激活与炎症、昼夜节律紊乱和神经毒性作用之间存在联系。我们着手进一步描述慢性吗啡对疼痛行为、小胶质细胞和神经元染色以及脊髓小胶质细胞转录组的影响,以更好地了解小胶质细胞在长期大剂量阿片类药物给药后果中的作用。实验方法:在两个实验中,我们给雄性和雌性大鼠增加皮下剂量的盐酸吗啡或生理盐水。热痛觉通过甩尾和热板测试进行评估。在实验一中,制备脊髓(SC)样本进行小胶质和神经元标记物的免疫组织化学染色。实验二分析腰椎SC小胶质细胞的转录组。主要结果:雌性和雄性大鼠对吗啡具有相似的抗伤害性反应,并且在长期增加高剂量的s.c.吗啡后对热刺激产生相似的抗伤害性耐受性。吗啡给药2周后,SC小胶质细胞iba1染色面积减小。吗啡治疗后,在小胶质细胞转录组中发现的差异表达基因包括与昼夜节律、细胞凋亡和免疫系统过程相关的基因。结论:雌性和雄性大鼠在长期高剂量吗啡后表现出相似的疼痛行为。这与脊髓小胶质细胞染色减少有关,提示激活或凋亡减少。大剂量吗啡也与SC小胶质细胞中基因表达的一些变化有关,例如与昼夜节律(Per2, Per3, Dbp)相关的基因表达。这些变化应在长期大剂量阿片类药物的临床后果中予以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
期刊最新文献
Neural Adaptation of the Reward System in Primary Dysmenorrhea. Analyzing Substance Levels and Pain Perception in Painless Labor: The Impact of Spinal Epidural Analgesia. Upregulation of KDM6B in the anterior cingulate cortex contributes to neonatal maternal deprivation-induced chronic visceral pain in mice. Low-frequency electroacupuncture exerts antinociceptive effects through activation of POMC neural circuit induced endorphinergic input to the periaqueductal gray from the arcuate nucleus Concomitant use of Pre-emptive analgesia with Local and General Anesthesia in Rat Uterine Surgical Pain Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1