SR-TWAS: Leveraging Multiple Reference Panels to Improve TWAS Power by Ensemble Machine Learning.

Randy L Parrish, Aron S Buchman, Shinya Tasaki, Yanling Wang, Denis Avey, Jishu Xu, Philip L De Jager, David A Bennett, Michael P Epstein, Jingjing Yang
{"title":"SR-TWAS: Leveraging Multiple Reference Panels to Improve TWAS Power by Ensemble Machine Learning.","authors":"Randy L Parrish, Aron S Buchman, Shinya Tasaki, Yanling Wang, Denis Avey, Jishu Xu, Philip L De Jager, David A Bennett, Michael P Epstein, Jingjing Yang","doi":"10.1101/2023.06.20.23291605","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ce/5a/nihpp-2023.06.20.23291605v1.PMC10327185.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.20.23291605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SR-TWAS:利用多个参考面板通过集成机器学习提高TWAS的能力。
给定组织或多个组织的多个参考面板通常存在,多元回归方法可用于训练TWAS的基因表达插补模型。为了利用用多个参考面板、回归方法和组织训练的表达插补模型(即基础模型),我们开发了一种基于堆叠回归的TWAS(SR-TWAS)工具,该工具可以获得给定验证转录组数据集的基础模型的最佳线性组合。模拟和实际研究都表明,SR-TWAS由于增加了有效训练样本量,并在多元回归方法和组织中借用了力量,从而提高了力量。利用多个参考面板、组织和回归方法的基础模型,我们对阿尔茨海默病(AD)、痴呆症和帕金森病(PD)的研究分别确定了11个AD(补充运动区组织)的独立显著风险基因和12个PD(黑质组织)的独立显著风险基因,包括6个AD新基因和6个PD新基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
After the Infection: A Survey of Pathogens and Non-communicable Human Disease. The Extra-Islet Pancreas Supports Autoimmunity in Human Type 1 Diabetes. Keyphrase Identification Using Minimal Labeled Data with Hierarchical Contexts and Transfer Learning. Advancing Efficacy Prediction for EHR-based Emulated Trials in Repurposing Heart Failure Therapies. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1