{"title":"Ionic current driven by a viscosity gradient","authors":"Benjamin Wiener and Derek Stein","doi":"10.1039/D3FD00053B","DOIUrl":null,"url":null,"abstract":"<p >Gradients of voltage, pressure, temperature, and salinity can transport objects in micro- and nanofluidic systems by well-known mechanisms. This paper explores the dynamics of particles in a viscosity gradient with numerical simulations. The different stochastic rules used to integrate the random motion of Brownian particles affect the steady-state distribution of particles in a diffusivity gradient. Importantly, the simulations illuminate the important role that the boundary conditions play, disallowing a steady-state flux when the boundary conditions mimic those of a closed container, but allowing flux when they mimic electrodes. These results provide an interpretation for measurements of a steady ionic current flowing between electrodes separated by a nanofluidic channel with a liquid viscosity gradient.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"246 ","pages":" 47-59"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d3fd00053b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gradients of voltage, pressure, temperature, and salinity can transport objects in micro- and nanofluidic systems by well-known mechanisms. This paper explores the dynamics of particles in a viscosity gradient with numerical simulations. The different stochastic rules used to integrate the random motion of Brownian particles affect the steady-state distribution of particles in a diffusivity gradient. Importantly, the simulations illuminate the important role that the boundary conditions play, disallowing a steady-state flux when the boundary conditions mimic those of a closed container, but allowing flux when they mimic electrodes. These results provide an interpretation for measurements of a steady ionic current flowing between electrodes separated by a nanofluidic channel with a liquid viscosity gradient.