Tiancheng Zhang, Yasir Q Almajidi, Sameer A Awad, Firas Rahi Alhachami, Maher Abdulfadhil Gatea, Wesam R Kadhum
{"title":"Dosimetric properties of PASSAG polymer gel dosimeter in electron beam radiotherapy using magnetic resonance imaging.","authors":"Tiancheng Zhang, Yasir Q Almajidi, Sameer A Awad, Firas Rahi Alhachami, Maher Abdulfadhil Gatea, Wesam R Kadhum","doi":"10.3233/XST-230073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated.</p><p><strong>Objective: </strong>This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies.</p><p><strong>Methods: </strong>The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days.</p><p><strong>Results: </strong>The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times.</p><p><strong>Conclusion: </strong>The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"31 4","pages":"825-836"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated.
Objective: This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies.
Methods: The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days.
Results: The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times.
Conclusion: The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes