Diagnostic performance of the thyroid imaging reporting and data system improved by color-coded acoustic radiation force pulse imaging.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2023-01-01 DOI:10.3233/XST-221359
Kai-Mei Lian, Teng Lin
{"title":"Diagnostic performance of the thyroid imaging reporting and data system improved by color-coded acoustic radiation force pulse imaging.","authors":"Kai-Mei Lian,&nbsp;Teng Lin","doi":"10.3233/XST-221359","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the value of color-coded virtual touch tissue imaging (CCV) using acoustic radiation force pulse technology (ARFI) in diagnosing malignant thyroid nodules.</p><p><strong>Methods: </strong>Images including 189 thyroid nodules were collected as training samples and a binary logistic regression analysis was used to calculate regression coefficients for Thyroid Imaging Reporting and Data System (TI-RADS) and CCV. An integrated prediction model (TI-RADS+CCV) was then developed based on the regression coefficients. Another testing dataset involving 40 thyroid nodules was used to validate and compare the diagnostic performance of TI-RADS, CCV, and the integrated predictive models using the receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Both TI-RADS and CCV are independent predictors. The diagnostic performance advantage of CCV is insignificant compared to TI-RADS (P = 0.61). However, the diagnostic performance of the integrated prediction model is significantly higher than that of TI-RADS or CCV (all P < 0.05). Applying to the validation image dateset, the integrated predictive model yields an area under the curve (AUC) of 0.880.</p><p><strong>Conclusions: </strong>Developing a new predictive model that integrates the regression coefficients calculated from TI-RADS and CCV enables to achieve the superior performance of thyroid nodule diagnosis to that of using TI-RADS or CCV alone.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-221359","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore the value of color-coded virtual touch tissue imaging (CCV) using acoustic radiation force pulse technology (ARFI) in diagnosing malignant thyroid nodules.

Methods: Images including 189 thyroid nodules were collected as training samples and a binary logistic regression analysis was used to calculate regression coefficients for Thyroid Imaging Reporting and Data System (TI-RADS) and CCV. An integrated prediction model (TI-RADS+CCV) was then developed based on the regression coefficients. Another testing dataset involving 40 thyroid nodules was used to validate and compare the diagnostic performance of TI-RADS, CCV, and the integrated predictive models using the receiver operating characteristic (ROC) curves.

Results: Both TI-RADS and CCV are independent predictors. The diagnostic performance advantage of CCV is insignificant compared to TI-RADS (P = 0.61). However, the diagnostic performance of the integrated prediction model is significantly higher than that of TI-RADS or CCV (all P < 0.05). Applying to the validation image dateset, the integrated predictive model yields an area under the curve (AUC) of 0.880.

Conclusions: Developing a new predictive model that integrates the regression coefficients calculated from TI-RADS and CCV enables to achieve the superior performance of thyroid nodule diagnosis to that of using TI-RADS or CCV alone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
彩色编码声辐射力脉冲成像提高甲状腺影像报告和数据系统的诊断性能。
目的:探讨声辐射力脉冲技术(ARFI)彩色编码虚拟触摸组织成像(CCV)在甲状腺恶性结节诊断中的价值。方法:收集189张甲状腺结节图像作为训练样本,采用二元logistic回归分析计算甲状腺影像学报告与数据系统(TI-RADS)和CCV的回归系数。基于回归系数建立TI-RADS+CCV综合预测模型。另一个包含40个甲状腺结节的测试数据集用于验证和比较TI-RADS、CCV和使用受试者工作特征(ROC)曲线的综合预测模型的诊断性能。结果:TI-RADS和CCV均为独立预测因子。与TI-RADS相比,CCV的诊断性能优势不显著(P = 0.61)。结论:将TI-RADS和CCV计算的回归系数进行整合,建立新的预测模型,可以获得比单独使用TI-RADS或CCV更好的甲状腺结节诊断效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Adaptive prior image constrained total generalized variation for low-dose dynamic cerebral perfusion CT reconstruction. A comprehensive guide to content-based image retrieval algorithms with visualsift ensembling. Multiscale unsupervised network for deformable image registration. Extracellular volume fraction of liver and pancreas using spectral CT in hypertensive patients: A comparative study. Dosimetric effect of collimator rotation on intensity modulated radiotherapy and volumetric modulated arc therapy for rectal cancer radiotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1