Julia Berezutskaya, Zachary V Freudenburg, Mariska J Vansteensel, Erik J Aarnoutse, Nick F Ramsey, Marcel A J van Gerven
{"title":"Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models.","authors":"Julia Berezutskaya, Zachary V Freudenburg, Mariska J Vansteensel, Erik J Aarnoutse, Nick F Ramsey, Marcel A J van Gerven","doi":"10.1088/1741-2552/ace8be","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.<i>Approach.</i>In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.<i>Main results.</i>We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.<i>Significance.</i>These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ace8be","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.Approach.In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.Main results.We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.Significance.These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.