Individual and combined effects of deoxynivalenol (DON) with other Fusarium mycotoxins on rainbow trout (Oncorhynchus mykiss) growth performance and health.
Paraskevi Koletsi, Geert F Wiegertjes, Elisabeth A M Graat, Marijn de Kool, Philip Lyons, Johan W Schrama
{"title":"Individual and combined effects of deoxynivalenol (DON) with other Fusarium mycotoxins on rainbow trout (Oncorhynchus mykiss) growth performance and health.","authors":"Paraskevi Koletsi, Geert F Wiegertjes, Elisabeth A M Graat, Marijn de Kool, Philip Lyons, Johan W Schrama","doi":"10.1007/s12550-023-00496-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FU<sub>mix</sub>). This FU<sub>mix</sub> contained fusaric acid and fumonisin B<sub>1</sub>, B<sub>2</sub> and B<sub>3</sub>. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FU<sub>mix</sub>; DON-CON; and DON-FU<sub>mix</sub>. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FU<sub>mix</sub> toxins was 12,700 and 100 µg/kg feed in the diets with and without FU<sub>mix</sub>, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FU<sub>mix</sub> and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FU<sub>mix</sub> (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FU<sub>mix</sub> affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FU<sub>mix</sub> were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FU<sub>mix</sub> (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FU<sub>mix</sub> (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FU<sub>mix</sub> contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FU<sub>mix</sub> and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"405-420"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-023-00496-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FUmix). This FUmix contained fusaric acid and fumonisin B1, B2 and B3. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FUmix; DON-CON; and DON-FUmix. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FUmix toxins was 12,700 and 100 µg/kg feed in the diets with and without FUmix, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FUmix and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FUmix (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FUmix affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FUmix were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FUmix (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FUmix (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FUmix contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FUmix and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.