{"title":"Robust Grasping of a Variable Stiffness Soft Gripper in High-Speed Motion Based on Reinforcement Learning.","authors":"Mingzhu Zhu, Junyue Dai, Yu Feng","doi":"10.1089/soro.2022.0246","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial robots are widely deployed to perform pick-and-place tasks at high speeds to minimize manufacturing time and boost productivity. When dealing with delicate or fragile goods, soft robotic grippers are better end effectors than rigid grippers due to their softness and safe interaction. However, high-speed motion causes the soft robotic gripper to vibrate, leading to damage of the objects or failed grasping. Soft grippers with variable stiffness are considered to be effective in suppressing vibrations by adding damping devices, but it is quite challenging to compromise between stiffness and compliance. In this article, a controller based on deep reinforcement learning is proposed to control the stiffness of the soft robotic gripper, which can accurately suppress the vibration with only a minor influence on its compliance and softness. The proposed controller is a real-time vibration control strategy, which estimates the output of the controller based on the current operating environment. To demonstrate the effectiveness of the proposed controller, experiments were done with a UR5 robotic arm. For different situations, experimental results show that the proposed controller responds quickly and reduces the amplitude of the oscillation substantially.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"95-104"},"PeriodicalIF":6.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0246","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial robots are widely deployed to perform pick-and-place tasks at high speeds to minimize manufacturing time and boost productivity. When dealing with delicate or fragile goods, soft robotic grippers are better end effectors than rigid grippers due to their softness and safe interaction. However, high-speed motion causes the soft robotic gripper to vibrate, leading to damage of the objects or failed grasping. Soft grippers with variable stiffness are considered to be effective in suppressing vibrations by adding damping devices, but it is quite challenging to compromise between stiffness and compliance. In this article, a controller based on deep reinforcement learning is proposed to control the stiffness of the soft robotic gripper, which can accurately suppress the vibration with only a minor influence on its compliance and softness. The proposed controller is a real-time vibration control strategy, which estimates the output of the controller based on the current operating environment. To demonstrate the effectiveness of the proposed controller, experiments were done with a UR5 robotic arm. For different situations, experimental results show that the proposed controller responds quickly and reduces the amplitude of the oscillation substantially.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.