In silico prediction of drug-induced liver injury with a complementary integration strategy based on hybrid representation.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2023-07-01 DOI:10.1002/minf.202200284
Yaxin Gu, Yimeng Wang, Zengrui Wu, Weihua Li, Guixia Liu, Yun Tang
{"title":"In silico prediction of drug-induced liver injury with a complementary integration strategy based on hybrid representation.","authors":"Yaxin Gu,&nbsp;Yimeng Wang,&nbsp;Zengrui Wu,&nbsp;Weihua Li,&nbsp;Guixia Liu,&nbsp;Yun Tang","doi":"10.1002/minf.202200284","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced liver injury (DILI) is one of the major causes of drug withdrawals, acute liver injury and blackbox warnings. Clinical diagnosis of DILI is a huge challenge due to the complex pathogenesis and lack of specific biomarkers. In recent years, machine learning methods have been used for DILI risk assessment, but the model generalization does not perform satisfactorily. In this study, we constructed a large DILI data set and proposed an integration strategy based on hybrid representations for DILI prediction (HR-DILI). Benefited from feature integration, the hybrid graph neural network models outperformed single representation-based models, among which hybrid-GraphSAGE showed balanced performance in cross-validation with AUC (area under the curve) as 0.804±0.019. In the external validation set, HR-DILI improved the AUC by 6.4 %-35.9 % compared to the base model with a single representation. Compared with published DILI prediction models, HR-DILI had better and balanced performance. The performance of local models for natural products and synthetic compounds were also explored. Furthermore, eight key descriptors and six structural alerts associated with DILI were analyzed to increase the interpretability of the models. The improved performance of HR-DILI indicated that it would provide reliable guidance for DILI risk assessment.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"42 7","pages":"e2200284"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-induced liver injury (DILI) is one of the major causes of drug withdrawals, acute liver injury and blackbox warnings. Clinical diagnosis of DILI is a huge challenge due to the complex pathogenesis and lack of specific biomarkers. In recent years, machine learning methods have been used for DILI risk assessment, but the model generalization does not perform satisfactorily. In this study, we constructed a large DILI data set and proposed an integration strategy based on hybrid representations for DILI prediction (HR-DILI). Benefited from feature integration, the hybrid graph neural network models outperformed single representation-based models, among which hybrid-GraphSAGE showed balanced performance in cross-validation with AUC (area under the curve) as 0.804±0.019. In the external validation set, HR-DILI improved the AUC by 6.4 %-35.9 % compared to the base model with a single representation. Compared with published DILI prediction models, HR-DILI had better and balanced performance. The performance of local models for natural products and synthetic compounds were also explored. Furthermore, eight key descriptors and six structural alerts associated with DILI were analyzed to increase the interpretability of the models. The improved performance of HR-DILI indicated that it would provide reliable guidance for DILI risk assessment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合表示的互补整合策略的药物性肝损伤的计算机预测。
药物性肝损伤(DILI)是引起停药、急性肝损伤和黑盒警告的主要原因之一。由于其复杂的发病机制和缺乏特异性的生物标志物,DILI的临床诊断是一个巨大的挑战。近年来,机器学习方法被用于DILI风险评估,但模型泛化效果不理想。本研究构建了一个大型DILI数据集,并提出了一种基于混合表示的DILI预测集成策略(HR-DILI)。得益于特征集成,混合图神经网络模型优于基于单一表示的模型,其中hybrid- graphsage在交叉验证中表现均衡,AUC(曲线下面积)为0.804±0.019。在外部验证集中,HR-DILI比具有单一表示的基本模型提高了6.4% - 35.9%的AUC。与已发表的DILI预测模型相比,HR-DILI具有更好的平衡性能。对天然产物和合成化合物的局部模型的性能也进行了探讨。此外,分析了与DILI相关的8个关键描述符和6个结构警报,以提高模型的可解释性。HR-DILI的改进表明其可为DILI风险评估提供可靠的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Extended Activity Cliffs-Driven Approaches on Data Splitting for the Study of Bioactivity Machine Learning Predictions. BIOMX-DB: A web application for the BIOFACQUIM natural product database. Chemoinformatics for corrosion science: Data-driven modeling of corrosion inhibition by organic molecules. My 50 Years with Chemoinformatics. Pathway-based prediction of the therapeutic effects and mode of action of custom-made multiherbal medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1