A rapid, high-throughput, viral infectivity assay using automated brightfield microscopy with machine learning

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2023-10-01 DOI:10.1016/j.slast.2023.07.003
Rupert Dodkins , John R. Delaney , Tess Overton , Frank Scholle , Alba Frias-De-Diego , Elisa Crisci , Nafisa Huq , Ingo Jordan , Jason T. Kimata , Teresa Findley , Ilya G. Goldberg
{"title":"A rapid, high-throughput, viral infectivity assay using automated brightfield microscopy with machine learning","authors":"Rupert Dodkins ,&nbsp;John R. Delaney ,&nbsp;Tess Overton ,&nbsp;Frank Scholle ,&nbsp;Alba Frias-De-Diego ,&nbsp;Elisa Crisci ,&nbsp;Nafisa Huq ,&nbsp;Ingo Jordan ,&nbsp;Jason T. Kimata ,&nbsp;Teresa Findley ,&nbsp;Ilya G. Goldberg","doi":"10.1016/j.slast.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Infectivity assays are essential for the development of viral vaccines, antiviral therapies, and the manufacture of biologicals. Traditionally, these assays take 2–7 days and require several manual processing steps after infection. We describe an automated viral infectivity assay (AVIA<sup>TM</sup>), using convolutional neural networks (CNNs) and high-throughput brightfield microscopy on 96-well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. CNN models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit between virus dilution curves and CNN predictions, results in sensitivity ranges comparable to or better than conventional plaque or TCID<sub>50</sub> assays, and a precision of ∼10%, which is considerably better than conventional infectivity assays. Because this technology is based on sensitizing CNNs to specific phenotypes of infection, it has potential as a rapid, broad-spectrum tool for virus characterization, and potentially identification.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630323000456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Infectivity assays are essential for the development of viral vaccines, antiviral therapies, and the manufacture of biologicals. Traditionally, these assays take 2–7 days and require several manual processing steps after infection. We describe an automated viral infectivity assay (AVIATM), using convolutional neural networks (CNNs) and high-throughput brightfield microscopy on 96-well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. CNN models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit between virus dilution curves and CNN predictions, results in sensitivity ranges comparable to or better than conventional plaque or TCID50 assays, and a precision of ∼10%, which is considerably better than conventional infectivity assays. Because this technology is based on sensitizing CNNs to specific phenotypes of infection, it has potential as a rapid, broad-spectrum tool for virus characterization, and potentially identification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种快速、高通量、病毒感染性的检测方法,使用带有机器学习的自动明场显微镜。
感染性测定对于开发病毒疫苗、抗病毒疗法和生物制品至关重要。传统上,这些检测需要2-7天,并且在感染后需要几个手动处理步骤。我们描述了一种自动病毒感染性测定(AVIATM),使用卷积神经网络(CNNs)和高通量明场显微镜在96孔板上进行,该方法可以在数小时内量化感染表型,在人工观察之前,无需样品制备。CNN模型针对HIV、甲型流感病毒、冠状病毒229E、痘苗病毒、脊髓灰质炎病毒和腺病毒进行了训练,这些病毒共同涵盖了四大类病毒(DNA、RNA、包膜和非包膜)。在病毒稀释曲线和CNN预测之间拟合的S形函数的灵敏度范围与传统的斑块或TCID50测定相当或更好,精度为~10%,这比传统的传染性测定要好得多。因为这项技术是基于使细胞神经网络对特定的感染表型敏感,它有潜力成为一种快速、广谱的病毒表征和潜在鉴定工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Management of experimental workflows in robotic cultivation platforms. Application of conjugated polymer nanocomposite materials as biosensors in rehabilitation of ankle joint injuries in martial arts sports. Identification of m6A-related lncRNAs prognostic signature for predicting immunotherapy response in cervical cancer Regional developers’ community accelerates laboratory automation Accelerating covalent binding studies: Direct mass shift measurement with acoustic ejection and TOF-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1