A 3d-4d-5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2023-07-24 DOI:10.1002/adma.202303719
Ren He, Linlin Yang, Yu Zhang, Daochuan Jiang, Seungho Lee, Sharona Horta, Zhifu Liang, Xuan Lu, Ahmad Ostovari Moghaddam, Junshan Li, Maria Ibáñez, Ying Xu, Yingtang Zhou, Andreu Cabot
{"title":"A 3d-4d-5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries","authors":"Ren He,&nbsp;Linlin Yang,&nbsp;Yu Zhang,&nbsp;Daochuan Jiang,&nbsp;Seungho Lee,&nbsp;Sharona Horta,&nbsp;Zhifu Liang,&nbsp;Xuan Lu,&nbsp;Ahmad Ostovari Moghaddam,&nbsp;Junshan Li,&nbsp;Maria Ibáñez,&nbsp;Ying Xu,&nbsp;Yingtang Zhou,&nbsp;Andreu Cabot","doi":"10.1002/adma.202303719","DOIUrl":null,"url":null,"abstract":"<p>High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution-based low-temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm<sup>−2</sup> and 276 mV at 100 mA cm<sup>−2</sup>. Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d-band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc–air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm<sup>−2</sup>, a specific capacity of 857 mAh g<sub>Zn</sub><sup>−1</sup><sub>,</sub> and excellent stability for over 660 h of continuous charge–discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge–discharge performance at different bending angles. This work shows the significance of 4d/5d metal-modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 46","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202303719","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution-based low-temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm−2 and 276 mV at 100 mA cm−2. Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d-band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc–air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm−2, a specific capacity of 857 mAh gZn−1, and excellent stability for over 660 h of continuous charge–discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge–discharge performance at different bending angles. This work shows the significance of 4d/5d metal-modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种3d-4d-5d高熵合金作为双功能氧催化剂用于坚固的水性锌-空气电池。
高熵合金(HEAs)是用于析氧和还原反应(OER/ORR)的非常合适的候选催化剂,因为它们为优化电子结构和催化位点提供了许多参数。本文采用基于溶液的低温方法合成了FeCoNiMoW HEA纳米颗粒。这样的FeCoNiMoW纳米颗粒显示出高熵性质、细微的晶格畸变和调制的电子结构,导致优异的OER性能,在10mA cm-2时过电势为233mV,在100mA cm-2下过电势为276mV。密度泛函理论计算揭示了FeCoNiMoW活性位点的电子结构,该活性位点具有优化的d带中心位置,能够适当吸附OOH*中间体,并降低OER过程中的吉布斯自由能垒。基于这种HEA的水性锌-空气电池(ZABs)表现出1.59V的高开路电势、116.9mW cm-2的峰值功率密度、857mAh gZn-1的比容量以及超过660小时的连续充放电循环的优异稳定性。柔性和固体ZAB也进行了组装和测试,在不同的弯曲角度下显示出优异的充放电性能。这项工作表明了4d/5d金属调制电子结构和优化吸附能力对提高OER/ORR、ZABs等性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Colloid‐Forming Prodrug‐Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection Buried Interface Modulation Using Self‐Assembled Monolayer and Ionic Liquid Hybrids for High‐Performance Perovskite and Perovskite/CuInGaSe2 Tandem Photovoltaics Fe/Mo‐Based Lipid Peroxidation Nanoamplifier Combined with Adenosine Immunometabolism Regulation to Augment Anti‐Breast Cancer Immunity Constructing the Dirac Electronic Behavior Database of Under‐Stress Transition Metal Dichalcogenides for Broad Applications Reversible Nanocomposite by Programming Amorphous Polymer Conformation Under Nanoconfinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1