{"title":"Simulating survival data when one subgroup lacks information.","authors":"Yiqi Zhao, Ping Yan, Xinfeng Yang","doi":"10.1080/10543406.2023.2236218","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we aim to show the process of simulating survival data when the distribution of the overall population and one subgroup (called \"positive subgroup\") as well as the proportion of the subgroup is known, while the distribution of the other subgroup (called \"negative subgroup\") is unknown. We propose a combination method which generates survival data of the positive subgroup and negative subgroup, respectively, and survival data of the overall population are the combination of the two subgroups. The parameters of the overall population and the positive subgroup need to satisfy certain constraints, otherwise the parameters may lead to contradictions. From simulation, we show that our proposed combination method can reflect the correlation between the test statistics of overall population and positive subgroup, which makes the simulated data more realistic and the results of simulation more reliable. Moreover, for a multiplicity control in trial design, the combination method can help to determine the <math><mrow><mrow><mi>α</mi></mrow></mrow></math> splitting strategy between primary endpoints, and is helpful in designs of clinical trials as shown in three applications.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"613-625"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2236218","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we aim to show the process of simulating survival data when the distribution of the overall population and one subgroup (called "positive subgroup") as well as the proportion of the subgroup is known, while the distribution of the other subgroup (called "negative subgroup") is unknown. We propose a combination method which generates survival data of the positive subgroup and negative subgroup, respectively, and survival data of the overall population are the combination of the two subgroups. The parameters of the overall population and the positive subgroup need to satisfy certain constraints, otherwise the parameters may lead to contradictions. From simulation, we show that our proposed combination method can reflect the correlation between the test statistics of overall population and positive subgroup, which makes the simulated data more realistic and the results of simulation more reliable. Moreover, for a multiplicity control in trial design, the combination method can help to determine the splitting strategy between primary endpoints, and is helpful in designs of clinical trials as shown in three applications.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.