PIMA-CT: Physical Model-Aware Cyclic Simulation and Denoising for Ultra-Low-Dose CT Restoration.

Peng Liu, Linsong Xu, Garrett Fullerton, Yao Xiao, James-Bond Nguyen, Zhongyu Li, Izabella Barreto, Catherine Olguin, Ruogu Fang
{"title":"PIMA-CT: Physical Model-Aware Cyclic Simulation and Denoising for Ultra-Low-Dose CT Restoration.","authors":"Peng Liu,&nbsp;Linsong Xu,&nbsp;Garrett Fullerton,&nbsp;Yao Xiao,&nbsp;James-Bond Nguyen,&nbsp;Zhongyu Li,&nbsp;Izabella Barreto,&nbsp;Catherine Olguin,&nbsp;Ruogu Fang","doi":"10.3389/fradi.2022.904601","DOIUrl":null,"url":null,"abstract":"<p><p>A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"2 ","pages":"904601"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2022.904601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIMA-CT:物理模型感知循环仿真与超低剂量CT恢复去噪。
大量的研究建议通过低剂量和噪声的计算机断层扫描(CT)来获得高质量的图像,以减少辐射。然而,这些研究是针对人群水平的数据而设计的,没有考虑CT设备和个体的差异,限制了当前方法的性能,特别是对于超低剂量CT成像。在这里,我们提出了PIMA-CT,一种集成无监督学习框架的物理拟人化幻影模型,使用一种称为循环模拟和去噪(CSD)的新型深度学习技术来解决这些限制。我们首先获得了配对的低剂量和标准剂量CT扫描的幻影,然后开发了两个生成神经网络:噪声模拟器和去噪器。该模拟器从两个独立的图像空间(例如,低剂量幻影模型扫描和标准剂量患者扫描)中提取真实的低剂量噪声和组织特征到统一的特征空间中。同时,去噪器向模拟器反馈产生的噪声的质量。通过这种方式,模拟器和去噪器循环交互,优化网络学习,减轻去噪器,同时去除噪声和恢复组织特征。我们全面评估了我们的方法去除真实低剂量噪声和高斯模拟低剂量噪声。结果表明,CSD在不使用任何标记数据(实际患者的低剂量CT扫描)或模拟低剂量CT扫描的情况下,优于最先进的去噪算法之一。该研究可能为医学成像,特别是超低剂量CT扫描的恢复,引入物理模型提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Language task-based fMRI analysis using machine learning and deep learning. Case Report: Diffuse cerebral lymphomatosis with superimposed multifocal primary CNS lymphoma. Diffusion-weighted MRI in the identification of renal parenchymal involvement in children with a first episode of febrile urinary tract infection. SenseCare: a research platform for medical image informatics and interactive 3D visualization. Editorial: Artificial intelligence and multimodal medical imaging data fusion for improving cardiovascular disease care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1