Comparison of Image Quality and Radiation Dose Between Single-Energy and Dual-Energy Images for the Brain With Stereotactic Frames on Dual-Energy Cerebral CT.

Frontiers in radiology Pub Date : 2022-06-10 eCollection Date: 2022-01-01 DOI:10.3389/fradi.2022.899100
Xiaojing Zhao, Wang Chao, Yi Shan, Jingkai Li, Cheng Zhao, Miao Zhang, Jie Lu
{"title":"Comparison of Image Quality and Radiation Dose Between Single-Energy and Dual-Energy Images for the Brain With Stereotactic Frames on Dual-Energy Cerebral CT.","authors":"Xiaojing Zhao,&nbsp;Wang Chao,&nbsp;Yi Shan,&nbsp;Jingkai Li,&nbsp;Cheng Zhao,&nbsp;Miao Zhang,&nbsp;Jie Lu","doi":"10.3389/fradi.2022.899100","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Preoperative stereotactic planning of deep brain stimulation (DBS) using computed tomography (CT) imaging in patients with Parkinson's disease (PD) is of clinical interest. However, frame-induced metal artifacts are common in clinical practice, which can be challenging for neurosurgeons to visualize brain structures.</p><p><strong>Objectives: </strong>To evaluate the image quality and radiation exposure of patients with stereotactic frame brain CT acquired using a dual-source CT (DSCT) system in single- and dual-energy modes.</p><p><strong>Materials and methods: </strong>We included 60 consecutive patients with Parkinson's disease (PD) and randomized them into two groups. CT images of the brain were performed using DSCT (Group A, an 80/Sn150 kVp dual-energy mode; Group B, a 120 kVp single-energy mode). One set of single-energy images (120 kVp) and 10 sets of virtual monochromatic images (50-140 keV) were obtained. Subjective image analysis of overall image quality was performed using a five-point Likert scale. For objective image quality evaluation, CT values, image noise, signal-to-noise ratio (SNR), and contrast-to-noise (CNR) were calculated. The radiation dose was recorded for each patient.</p><p><strong>Results: </strong>The mean effective radiation dose was reduced in the dual-energy mode (1.73 mSv ± 0.45 mSv) compared to the single-energy mode (3.16 mSv ± 0.64 mSv) (<i>p</i> < 0.001). Image noise was reduced by 46-52% for 120-140 keV VMI compared to 120 kVp images (both <i>p</i> < 0.01). CT values were higher at 100-140 keV than at 120 kVp images. At 120-140 keV, CT values of brain tissue showed significant differences at the level of the most severe metal artifacts (all <i>p</i> < 0.05). SNR was also higher in the dual-energy mode 90-140 keV compared to 120 kVp images, showing a significant difference between the two groups at 120-140 keV (all <i>p</i> < 0.01). The CNR was significantly better in Group A for 60-140 keV VMI compared to Group B (both <i>p</i> < 0.001). The highest subjective image scores were found in the 120 keV images, while 110-140 keV images had significantly higher scores than 120 kVp images (all <i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>DSCT images using dual-energy modes provide better objective and subjective image quality for patients with PD at lower radiation doses compared to single-energy modes and facilitate brain tissue visualization with stereotactic frame DBS procedures.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2022.899100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Preoperative stereotactic planning of deep brain stimulation (DBS) using computed tomography (CT) imaging in patients with Parkinson's disease (PD) is of clinical interest. However, frame-induced metal artifacts are common in clinical practice, which can be challenging for neurosurgeons to visualize brain structures.

Objectives: To evaluate the image quality and radiation exposure of patients with stereotactic frame brain CT acquired using a dual-source CT (DSCT) system in single- and dual-energy modes.

Materials and methods: We included 60 consecutive patients with Parkinson's disease (PD) and randomized them into two groups. CT images of the brain were performed using DSCT (Group A, an 80/Sn150 kVp dual-energy mode; Group B, a 120 kVp single-energy mode). One set of single-energy images (120 kVp) and 10 sets of virtual monochromatic images (50-140 keV) were obtained. Subjective image analysis of overall image quality was performed using a five-point Likert scale. For objective image quality evaluation, CT values, image noise, signal-to-noise ratio (SNR), and contrast-to-noise (CNR) were calculated. The radiation dose was recorded for each patient.

Results: The mean effective radiation dose was reduced in the dual-energy mode (1.73 mSv ± 0.45 mSv) compared to the single-energy mode (3.16 mSv ± 0.64 mSv) (p < 0.001). Image noise was reduced by 46-52% for 120-140 keV VMI compared to 120 kVp images (both p < 0.01). CT values were higher at 100-140 keV than at 120 kVp images. At 120-140 keV, CT values of brain tissue showed significant differences at the level of the most severe metal artifacts (all p < 0.05). SNR was also higher in the dual-energy mode 90-140 keV compared to 120 kVp images, showing a significant difference between the two groups at 120-140 keV (all p < 0.01). The CNR was significantly better in Group A for 60-140 keV VMI compared to Group B (both p < 0.001). The highest subjective image scores were found in the 120 keV images, while 110-140 keV images had significantly higher scores than 120 kVp images (all p < 0.05).

Conclusion: DSCT images using dual-energy modes provide better objective and subjective image quality for patients with PD at lower radiation doses compared to single-energy modes and facilitate brain tissue visualization with stereotactic frame DBS procedures.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双能脑CT立体定向帧单能和双能脑图像质量和辐射剂量的比较。
背景:应用计算机断层扫描(CT)成像对帕金森病(PD)患者进行术前立体定向脑深部刺激(DBS)计划具有临床意义。然而,框架诱导的金属伪影在临床实践中很常见,这对神经外科医生可视化大脑结构可能是一个挑战。目的:评价双源CT(DSCT)系统在单能和双能模式下获得的立体定向框架脑CT患者的图像质量和辐射暴露。材料和方法:我们纳入了60名连续的帕金森病患者,并将他们随机分为两组。使用DSCT进行大脑的CT图像(A组,80/Sn150kVp双能量模式;B组,120kVp单能量模式)。获得了一组单能量图像(120kVp)和10组虚拟单色图像(50-140keV)。使用五点Likert量表对整体图像质量进行主观图像分析。为了客观评估图像质量,计算了CT值、图像噪声、信噪比(SNR)和对比度与噪声(CNR)。记录每位患者的辐射剂量。结果:与单能量模式(3.16mSv±0.64mSv)相比,双能量模式下的平均有效辐射剂量(1.73mSv±0.45mSv)降低了(p<0.001)。与120kVp图像相比,120-140keV VMI图像噪声降低了46-52%(均p<0.01)。100-140keV图像的CT值高于120kVp。在120-140keV时,脑组织的CT值在最严重的金属伪影水平上显示出显著差异(均p<0.05)。与120kVp图像相比,90-140keV双能量模式下的SNR也更高,在120-140keV时,两组之间存在显著差异(均p<0.01)。在60-140keV VMI时,a组的CNR明显优于B组(均<0.001)。120keV图像的主观图像得分最高,而110-140keV图像的得分明显高于120kVp图像(均p<0.05)。结论:与单能量模式相比,双能量模式的DSCT图像在较低辐射剂量下为PD患者提供了更好的客观和主观图像质量,并有助于立体定向框架DBS程序的脑组织可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Wideband radiofrequency pulse sequence for evaluation of myocardial scar in patients with cardiac implantable devices. Value of interventional radiology and their contributions to modern medical systems Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data. Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network Standardized evaluation of the extent of resection in glioblastoma with automated early post-operative segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1