Interpretable machine learning for psychological research: Opportunities and pitfalls.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2023-05-25 DOI:10.1037/met0000560
Mirka Henninger, Rudolf Debelak, Yannick Rothacher, Carolin Strobl
{"title":"Interpretable machine learning for psychological research: Opportunities and pitfalls.","authors":"Mirka Henninger,&nbsp;Rudolf Debelak,&nbsp;Yannick Rothacher,&nbsp;Carolin Strobl","doi":"10.1037/met0000560","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, machine learning methods have become increasingly popular prediction methods in psychology. At the same time, psychological researchers are typically not only interested in making predictions about the dependent variable, but also in learning which predictor variables are relevant, how they influence the dependent variable, and which predictors interact with each other. However, most machine learning methods are not directly interpretable. Interpretation techniques that support researchers in describing how the machine learning technique came to its prediction may be a means to this end. We present a variety of interpretation techniques and illustrate the opportunities they provide for interpreting the results of two widely used black box machine learning methods that serve as our examples: random forests and neural networks. At the same time, we illustrate potential pitfalls and risks of misinterpretation that may occur in certain data settings. We show in which way correlated predictors impact interpretations with regard to the relevance or shape of predictor effects and in which situations interaction effects may or may not be detected. We use simulated didactic examples throughout the article, as well as an empirical data set for illustrating an approach to objectify the interpretation of visualizations. We conclude that, when critically reflected, interpretable machine learning techniques may provide useful tools when describing complex psychological relationships. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000560","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, machine learning methods have become increasingly popular prediction methods in psychology. At the same time, psychological researchers are typically not only interested in making predictions about the dependent variable, but also in learning which predictor variables are relevant, how they influence the dependent variable, and which predictors interact with each other. However, most machine learning methods are not directly interpretable. Interpretation techniques that support researchers in describing how the machine learning technique came to its prediction may be a means to this end. We present a variety of interpretation techniques and illustrate the opportunities they provide for interpreting the results of two widely used black box machine learning methods that serve as our examples: random forests and neural networks. At the same time, we illustrate potential pitfalls and risks of misinterpretation that may occur in certain data settings. We show in which way correlated predictors impact interpretations with regard to the relevance or shape of predictor effects and in which situations interaction effects may or may not be detected. We use simulated didactic examples throughout the article, as well as an empirical data set for illustrating an approach to objectify the interpretation of visualizations. We conclude that, when critically reflected, interpretable machine learning techniques may provide useful tools when describing complex psychological relationships. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心理学研究的可解释机器学习:机遇与陷阱。
近年来,机器学习方法已成为心理学中越来越流行的预测方法。与此同时,心理学研究人员通常不仅对因变量的预测感兴趣,还对了解哪些预测变量是相关的、它们如何影响因变量以及哪些预测变量相互作用感兴趣。然而,大多数机器学习方法都不能直接解释。支持研究人员描述机器学习技术是如何实现预测的解释技术可能是实现这一目标的一种手段。我们介绍了各种解释技术,并说明了它们为解释两种广泛使用的黑匣子机器学习方法的结果提供的机会,这两种方法是我们的例子:随机森林和神经网络。同时,我们说明了在某些数据设置中可能出现的潜在陷阱和误解风险。我们展示了相关预测因子以何种方式影响预测因子效应的相关性或形状的解释,以及在哪些情况下可能检测到或可能检测不到交互效应。我们在整篇文章中使用了模拟的教学示例,以及实证数据集来说明可视化解释的客观化方法。我们得出的结论是,当批判性地反思时,可解释的机器学习技术可能会在描述复杂的心理关系时提供有用的工具。(PsycInfo数据库记录(c)2023 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. How to conduct an integrative mixed methods meta-analysis: A tutorial for the systematic review of quantitative and qualitative evidence. Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs. Data-driven covariate selection for confounding adjustment by focusing on the stability of the effect estimator. Estimating and investigating multiple constructs multiple indicators social relations models with and without roles within the traditional structural equation modeling framework: A tutorial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1