{"title":"Prediction of soil ecotoxicity against <i>Folsomia candida</i> using acute and chronic endpoints.","authors":"R Paul, J Roy, K Roy","doi":"10.1080/1062936X.2023.2211350","DOIUrl":null,"url":null,"abstract":"<p><p>Soil invertebrates serve as great biological indicators of soil quality. However, there are very few in silico models developed so far on the soil toxicity of chemicals against soil invertebrates due to paucity of data. In this study, three available soil ecotoxicity data (pLC<sub>50</sub>, pLOEL and pNOEL) against the soil invertebrate <i>Folsomia candida</i> were collected from the ECOTOX database (cfpub.epa.gov/ecotox) and subjected to quantitative structure-activity relationship (QSAR) analysis using 2D descriptors. The collected data for each endpoint were initially curated and used to develop a partial least squares (PLS) regression model based on the features selected through a genetic algorithm followed by the best subset selection. Both internal and external validation metrics of the models' predictions are well-balanced and within the acceptable range as per the Organization for the Economic Cooperation and Development (OECD) criteria. From the developed models, it has been found that molecular weight and presence of phosphate group, electron donor groups, and polyhalogen substitution have a significant impact on the soil ecotoxicity. The soil ecotoxicological risk assessment of organic chemicals can therefore be prioritized by these features. With the availability of additional data in the future, the models may be further refined for more precise predictions.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 4","pages":"321-340"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2211350","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil invertebrates serve as great biological indicators of soil quality. However, there are very few in silico models developed so far on the soil toxicity of chemicals against soil invertebrates due to paucity of data. In this study, three available soil ecotoxicity data (pLC50, pLOEL and pNOEL) against the soil invertebrate Folsomia candida were collected from the ECOTOX database (cfpub.epa.gov/ecotox) and subjected to quantitative structure-activity relationship (QSAR) analysis using 2D descriptors. The collected data for each endpoint were initially curated and used to develop a partial least squares (PLS) regression model based on the features selected through a genetic algorithm followed by the best subset selection. Both internal and external validation metrics of the models' predictions are well-balanced and within the acceptable range as per the Organization for the Economic Cooperation and Development (OECD) criteria. From the developed models, it has been found that molecular weight and presence of phosphate group, electron donor groups, and polyhalogen substitution have a significant impact on the soil ecotoxicity. The soil ecotoxicological risk assessment of organic chemicals can therefore be prioritized by these features. With the availability of additional data in the future, the models may be further refined for more precise predictions.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.