Computational neurosciences and quantitative systems pharmacology: a powerful combination for supporting drug development in neurodegenerative diseases.
Hugo Geerts, Silke Bergeler, William W Lytton, Piet H van der Graaf
{"title":"Computational neurosciences and quantitative systems pharmacology: a powerful combination for supporting drug development in neurodegenerative diseases.","authors":"Hugo Geerts, Silke Bergeler, William W Lytton, Piet H van der Graaf","doi":"10.1007/s10928-023-09876-6","DOIUrl":null,"url":null,"abstract":"<p><p>Successful clinical development of new therapeutic interventions is notoriously difficult, especially in neurodegenerative diseases, where predictive biomarkers are scarce and functional improvement is often based on patient's perception, captured by structured interviews. As a consequence, mechanistic modeling of the processes relevant to therapeutic interventions in CNS disorders has been lagging behind other disease indications, probably because of the perceived complexity of the brain. However in this report, we develop the argument that a combination of Computational Neurosciences and Quantitative Systems Pharmacology (QSP) modeling of molecular pathways is a powerful simulation tool to enhance the probability of successful drug development for neurodegenerative diseases. Computational Neurosciences aims to predict action potential dynamics and neuronal circuit activation that are ultimately linked to behavioral changes and clinically relevant functional outcomes. These processes can not only be affected by the disease state, but also by common genotype variants on neurotransmitter-related proteins and the psycho-active medications often prescribed in these patient populations. Quantitative Systems Pharmacology (QSP) modeling of molecular pathways allows to simulate key pathological drivers of dementia, such as protein aggregation and neuroinflammatory responses. They often impact neurotransmitter homeostasis and voltage-gated ion-channels or lead to mitochondrial dysfunction, ultimately leading to changes in action potential dynamics and clinical readouts. Combining these two modeling approaches can lead to better actionable understanding of the many non-linear pharmacodynamic processes active in the human diseased brain. Practical applications include a rational selection of the optimal doses in combination therapies, identification of subjects more likely to respond to treatment, a more balanced stratification of treatment arms in terms of comedications, disease status and common genotype variants and re-analysis of small clinical trials to uncover a possible clinical signal. Ultimately this will lead to a higher success rate of bringing new therapeutics to the right patient populations.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"563-573"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09876-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Successful clinical development of new therapeutic interventions is notoriously difficult, especially in neurodegenerative diseases, where predictive biomarkers are scarce and functional improvement is often based on patient's perception, captured by structured interviews. As a consequence, mechanistic modeling of the processes relevant to therapeutic interventions in CNS disorders has been lagging behind other disease indications, probably because of the perceived complexity of the brain. However in this report, we develop the argument that a combination of Computational Neurosciences and Quantitative Systems Pharmacology (QSP) modeling of molecular pathways is a powerful simulation tool to enhance the probability of successful drug development for neurodegenerative diseases. Computational Neurosciences aims to predict action potential dynamics and neuronal circuit activation that are ultimately linked to behavioral changes and clinically relevant functional outcomes. These processes can not only be affected by the disease state, but also by common genotype variants on neurotransmitter-related proteins and the psycho-active medications often prescribed in these patient populations. Quantitative Systems Pharmacology (QSP) modeling of molecular pathways allows to simulate key pathological drivers of dementia, such as protein aggregation and neuroinflammatory responses. They often impact neurotransmitter homeostasis and voltage-gated ion-channels or lead to mitochondrial dysfunction, ultimately leading to changes in action potential dynamics and clinical readouts. Combining these two modeling approaches can lead to better actionable understanding of the many non-linear pharmacodynamic processes active in the human diseased brain. Practical applications include a rational selection of the optimal doses in combination therapies, identification of subjects more likely to respond to treatment, a more balanced stratification of treatment arms in terms of comedications, disease status and common genotype variants and re-analysis of small clinical trials to uncover a possible clinical signal. Ultimately this will lead to a higher success rate of bringing new therapeutics to the right patient populations.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.