An idea to explore: Engaging high school students in structure-function studies of bacterial sortase enzymes and inhibitors - A comprehensive computational experimental pipeline
{"title":"An idea to explore: Engaging high school students in structure-function studies of bacterial sortase enzymes and inhibitors - A comprehensive computational experimental pipeline","authors":"Shivani Godse, Tanvi Sapar, Jeanine F. Amacher","doi":"10.1002/bmb.21769","DOIUrl":null,"url":null,"abstract":"<p>High school science fairs provide an exceptional opportunity for students to gain experience with scientific research, and participation has positive outcomes with respect to chosen careers in the sciences. However, it can be challenging to engage high school students in university-level research outside of formal internship programs. Here, we describe an experimental pipeline for a computational structural biology project that engages high school students. Students are involved at every step of the investigation and utilize freely available software to dock inhibitors onto protein homologues, and then analyze the resulting complexes. Bacterial sortases are transpeptidases on the cell surface of Gram-positive bacteria and are a potential target for the development of antibiotics. Students modeled inhibitors bound to sortases from several organisms, asking questions about affinity and selectivity. Their project was ranked in the top 10% at both regional and state science fairs. This project design is easily adaptable to countless other protein systems and provides a pipeline for collaborative high school student/university professor inquiry.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"51 6","pages":"606-615"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21769","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High school science fairs provide an exceptional opportunity for students to gain experience with scientific research, and participation has positive outcomes with respect to chosen careers in the sciences. However, it can be challenging to engage high school students in university-level research outside of formal internship programs. Here, we describe an experimental pipeline for a computational structural biology project that engages high school students. Students are involved at every step of the investigation and utilize freely available software to dock inhibitors onto protein homologues, and then analyze the resulting complexes. Bacterial sortases are transpeptidases on the cell surface of Gram-positive bacteria and are a potential target for the development of antibiotics. Students modeled inhibitors bound to sortases from several organisms, asking questions about affinity and selectivity. Their project was ranked in the top 10% at both regional and state science fairs. This project design is easily adaptable to countless other protein systems and provides a pipeline for collaborative high school student/university professor inquiry.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.