FAR591 promotes the pathogenesis and progression of SONFH by regulating Fos expression to mediate the apoptosis of bone microvascular endothelial cells.

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING Bone Research Pub Date : 2023-05-22 DOI:10.1038/s41413-023-00259-8
Fei Zhang, Lei Wei, Lei Wang, Tao Wang, Zhihong Xie, Hong Luo, Fanchao Li, Jian Zhang, Wentao Dong, Gang Liu, Qinglin Kang, Xuesong Zhu, Wuxun Peng
{"title":"FAR591 promotes the pathogenesis and progression of SONFH by regulating Fos expression to mediate the apoptosis of bone microvascular endothelial cells.","authors":"Fei Zhang, Lei Wei, Lei Wang, Tao Wang, Zhihong Xie, Hong Luo, Fanchao Li, Jian Zhang, Wentao Dong, Gang Liu, Qinglin Kang, Xuesong Zhu, Wuxun Peng","doi":"10.1038/s41413-023-00259-8","DOIUrl":null,"url":null,"abstract":"<p><p>The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH. Then, we identified a new lncRNA in BMECs via lncRNA/mRNA microarray, termed Fos-associated lincRNA ENSRNOT00000088059.1 (FAR591). FAR591 is highly expressed during GC-induced BMEC apoptosis and femoral head necrosis. Knockout of FAR591 effectively blocked the GC-induced apoptosis of BMECs, which then alleviated the damage of GCs to the femoral head microcirculation and inhibited the pathogenesis and progression of SONFH. In contrast, overexpression of FAR591 significantly promoted the GC-induced apoptosis of BMECs, which then aggravated the damage of GCs to the femoral head microcirculation and promoted the pathogenesis and progression of SONFH. Mechanistically, GCs activate the glucocorticoid receptor, which translocates to the nucleus and directly acts on the FAR591 gene promoter to induce FAR591 gene overexpression. Subsequently, FAR591 binds to the Fos gene promoter (-245∼-51) to form a stable RNA:DNA triplet structure and then recruits TATA-box binding protein associated factor 15 and RNA polymerase II to promote Fos expression through transcriptional activation. Fos activates the mitochondrial apoptotic pathway by regulating the expression of Bcl-2 interacting mediator of cell death (Bim) and P53 upregulated modulator of apoptosis (Puma) to mediate GC-induced apoptosis of BMECs, which leads to femoral head microcirculation dysfunction and femoral head necrosis. In conclusion, these results confirm the mechanistic link between lncRNAs and the pathogenesis of SONFH, which helps reveal the pathogenesis of SONFH and provides a new target for the early prevention and treatment of SONFH.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-023-00259-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH. Then, we identified a new lncRNA in BMECs via lncRNA/mRNA microarray, termed Fos-associated lincRNA ENSRNOT00000088059.1 (FAR591). FAR591 is highly expressed during GC-induced BMEC apoptosis and femoral head necrosis. Knockout of FAR591 effectively blocked the GC-induced apoptosis of BMECs, which then alleviated the damage of GCs to the femoral head microcirculation and inhibited the pathogenesis and progression of SONFH. In contrast, overexpression of FAR591 significantly promoted the GC-induced apoptosis of BMECs, which then aggravated the damage of GCs to the femoral head microcirculation and promoted the pathogenesis and progression of SONFH. Mechanistically, GCs activate the glucocorticoid receptor, which translocates to the nucleus and directly acts on the FAR591 gene promoter to induce FAR591 gene overexpression. Subsequently, FAR591 binds to the Fos gene promoter (-245∼-51) to form a stable RNA:DNA triplet structure and then recruits TATA-box binding protein associated factor 15 and RNA polymerase II to promote Fos expression through transcriptional activation. Fos activates the mitochondrial apoptotic pathway by regulating the expression of Bcl-2 interacting mediator of cell death (Bim) and P53 upregulated modulator of apoptosis (Puma) to mediate GC-induced apoptosis of BMECs, which leads to femoral head microcirculation dysfunction and femoral head necrosis. In conclusion, these results confirm the mechanistic link between lncRNAs and the pathogenesis of SONFH, which helps reveal the pathogenesis of SONFH and provides a new target for the early prevention and treatment of SONFH.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAR591 通过调节 Fos 的表达来介导骨微血管内皮细胞的凋亡,从而促进 SONFH 的发病和进展。
类固醇诱导的股骨头坏死(SONFH)的具体发病机制尚未完全明了,目前也没有有效的早期治疗方法。了解长非编码 RNA(lncRNA)在 SONFH 发病机制中的作用和机制,将有助于揭示 SONFH 的发病机理,为其早期预防和治疗提供新的靶点。在这项研究中,我们首先证实了糖皮质激素(GC)诱导的骨微血管内皮细胞(BMECs)凋亡是SONFH发病和进展的前期事件。随后,我们通过lncRNA/mRNA芯片在BMECs中发现了一个新的lncRNA,称为Fos相关lincRNA ENSRNOT00000088059.1(FAR591)。FAR591 在 GC 诱导的 BMEC 细胞凋亡和股骨头坏死过程中高表达。敲除 FAR591 能有效阻止 GC 诱导的 BMEC 细胞凋亡,从而减轻 GC 对股骨头微循环的损伤,抑制 SONFH 的发病和进展。相反,过表达 FAR591 则会显著促进 GC 诱导的 BMECs 凋亡,进而加重 GCs 对股骨头微循环的损伤,促进 SONFH 的发病和进展。从机制上讲,GCs激活糖皮质激素受体,受体转位至细胞核,直接作用于FAR591基因启动子,诱导FAR591基因过表达。随后,FAR591 与 Fos 基因启动子(-245∼-51)结合,形成稳定的 RNA:DNA 三重结构,然后招募 TATA-box 结合蛋白相关因子 15 和 RNA 聚合酶 II,通过转录激活促进 Fos 的表达。Fos 通过调节 Bcl-2 相互作用的细胞死亡介质(Bim)和 P53 细胞凋亡上调调节因子(Puma)的表达,激活线粒体凋亡通路,从而介导 GC 诱导的 BMECs 细胞凋亡,导致股骨头微循环功能障碍和股骨头坏死。总之,这些结果证实了lncRNAs与SONFH发病机制之间的机理联系,有助于揭示SONFH的发病机制,为SONFH的早期预防和治疗提供了新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
期刊最新文献
IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2. Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass Periostin+ myeloid cells improved long bone regeneration in a mechanosensitive manner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1