Cell Networks in Endocrine/Neuroendocrine Gland Function.

IF 4.2 2区 医学 Q1 PHYSIOLOGY Comprehensive Physiology Pub Date : 2022-03-29 DOI:10.1002/cphy.c210031
Nathalie C Guérineau, Pauline Campos, Paul R Le Tissier, David J Hodson, Patrice Mollard
{"title":"Cell Networks in Endocrine/Neuroendocrine Gland Function.","authors":"Nathalie C Guérineau,&nbsp;Pauline Campos,&nbsp;Paul R Le Tissier,&nbsp;David J Hodson,&nbsp;Patrice Mollard","doi":"10.1002/cphy.c210031","DOIUrl":null,"url":null,"abstract":"<p><p>Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a \"textbook\" view of endocrine gland organization which has emanated from 20<sup>th</sup> century histological studies on thin 2D tissue sections. However, 21<sup>st</sup> -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c210031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内分泌/神经内分泌腺功能中的细胞网络。
生殖、生长、应激和代谢是由调节循环激素浓度的内分泌/神经内分泌系统决定的。在各种病理生理状态下,所有这些系统都会产生节律和激素搏动的变化。因此,内分泌/神经内分泌系统的输出必须在一个狭窄的有效激素浓度窗口内调节,但也必须保持可塑性的能力,以应对不断变化的生理需求。值得注意的是,大多数内分泌学家仍然对内分泌腺组织持“教科书”式的观点,这种观点源于20世纪对薄二维组织切片的组织学研究。然而,21世纪的技术进步,包括特定细胞类型的深入3D成像,极大地改变了我们的知识。我们现在知道,在不同的腺体中可以发现不同水平的多细胞组织,不同物种的组织结构也不同,可以通过修改来增强或减少激素的释放。本文主要研究细胞组织如何通过三种不同组织和复杂程度的内分泌/神经内分泌腺来调节激素输出:肾上腺髓质,具有单一的神经内分泌细胞类型;垂体前叶,具有多种混杂的细胞类型;胰腺有多种混杂的细胞类型组成不同的功能单位。我们给出了最近的方法,允许研究内分泌系统内的不同组成部分,特别是它们的时间和空间关系的概述。我们相信关于网络组织及其对激素分泌的影响的新发现对于理解内分泌轴在内分泌器官内部如何进行稳态调节至关重要。©2022美国生理学会。中国生物医学工程学报(英文版),2016。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
期刊最新文献
Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Human Gut Microbiota in Cardiovascular Disease. The Human Microbiome-A Physiologic Perspective. A TRP to Pathological Angiogenesis and Vascular Normalization. Epithelial Na + Channels Function as Extracellular Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1