Molecular cell types as functional units of the efferent vagus nerve

IF 6.2 2区 生物学 Q1 CELL BIOLOGY Seminars in cell & developmental biology Pub Date : 2023-07-26 DOI:10.1016/j.semcdb.2023.07.007
Tatiana C. Coverdell , Stephen B.G. Abbott , John N. Campbell
{"title":"Molecular cell types as functional units of the efferent vagus nerve","authors":"Tatiana C. Coverdell ,&nbsp;Stephen B.G. Abbott ,&nbsp;John N. Campbell","doi":"10.1016/j.semcdb.2023.07.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise “functional units” - neuron populations dedicated to the control of specific </span>vagal reflexes<span> or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 210-218"},"PeriodicalIF":6.2000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952123001489","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise “functional units” - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
输出迷走神经功能单位的分子细胞类型
迷走神经连接大脑和身体,协调消化、心肺和免疫功能。它的传出神经元,其轴突从脑干投射到内脏,被认为是由“功能单元”组成的——神经元群致力于控制特定的迷走神经反射或器官功能。先前的研究表明,这些功能单位在解剖学、神经化学和生理学上彼此不同,但尚未以实验可处理的方式定义它们的身份。然而,最近遗传技术和单细胞基因组学的研究表明,遗传上不同的神经元亚型可能是传出迷走神经的功能单位。在这里,我们回顾了这些方法是如何以前所未有的细节揭示出传出迷走神经的组织原理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.10
自引率
1.40%
发文量
310
审稿时长
9.1 weeks
期刊介绍: Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications. The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.
期刊最新文献
Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them Outside Front Cover Editorial Board/Publication Information From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1