Poly lactic-co-glycolic acid-alginate nanocarrier for efficient drug delivery to liver cancer cells

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS IET nanobiotechnology Pub Date : 2023-06-13 DOI:10.1049/nbt2.12143
Mahsa Hoseinzadeh, Mohammad Javad Mokhtari, Farshid Kafilzadeh, Javad Mohammadnejad, Yaghoob Taheri
{"title":"Poly lactic-co-glycolic acid-alginate nanocarrier for efficient drug delivery to liver cancer cells","authors":"Mahsa Hoseinzadeh,&nbsp;Mohammad Javad Mokhtari,&nbsp;Farshid Kafilzadeh,&nbsp;Javad Mohammadnejad,&nbsp;Yaghoob Taheri","doi":"10.1049/nbt2.12143","DOIUrl":null,"url":null,"abstract":"<p>Efficient drug delivery systems (DDSs) can potentially replace with conventional modalities in cancer therapy, like liver cancer. In this study, a novel folic acid (FA)-functionalised and alginate (Alg)-modified poly lactic-co-glycolic acid (PLGA) nanocomposite was developed for delivery of doxorubicin (Dox) to HepG2 and Huh7 liver cancer cells. After synthesising the nanocarrier, several analytical devices, including FT-IR, DLS, TGA, and TEM, were employed for its characterisation. Nano-metric size (55 and 85 nm in diameter), close to neutral surface charge, semi-spherical morphology, and successful synthesis were approved. Dox entrapment efficiency was determined near 1%, and sustained and pH-sensitive drug release behaviours of nanocarrier were ascertained for DDS. Afterwards, the cell viability test was carried out to study the HepG2 and Huh7 cells suppression capability of FA-PLGA-Dox-Alg. About 12% and 10% cell viabilities were observed in HepG2 and Huh7 cancer cells after 24 h treatment with 400 nM concentration of FA-PLGA-Dox-Alg nanocarrier respectively. The IC<sub>50</sub> value was observed for 100 nM after 24 h of treatment in cancer cells. These data have indicated that fabricated nanocarrier could be promising DDS against liver cancer and replace with conventional approaches in cancer treatment, like chemotherapy.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"450-464"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/f9/NBT2-17-450.PMC10374548.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient drug delivery systems (DDSs) can potentially replace with conventional modalities in cancer therapy, like liver cancer. In this study, a novel folic acid (FA)-functionalised and alginate (Alg)-modified poly lactic-co-glycolic acid (PLGA) nanocomposite was developed for delivery of doxorubicin (Dox) to HepG2 and Huh7 liver cancer cells. After synthesising the nanocarrier, several analytical devices, including FT-IR, DLS, TGA, and TEM, were employed for its characterisation. Nano-metric size (55 and 85 nm in diameter), close to neutral surface charge, semi-spherical morphology, and successful synthesis were approved. Dox entrapment efficiency was determined near 1%, and sustained and pH-sensitive drug release behaviours of nanocarrier were ascertained for DDS. Afterwards, the cell viability test was carried out to study the HepG2 and Huh7 cells suppression capability of FA-PLGA-Dox-Alg. About 12% and 10% cell viabilities were observed in HepG2 and Huh7 cancer cells after 24 h treatment with 400 nM concentration of FA-PLGA-Dox-Alg nanocarrier respectively. The IC50 value was observed for 100 nM after 24 h of treatment in cancer cells. These data have indicated that fabricated nanocarrier could be promising DDS against liver cancer and replace with conventional approaches in cancer treatment, like chemotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乳酸-羟基乙酸-海藻酸盐纳米载体对肝癌细胞的高效药物递送
有效的药物输送系统(dds)有可能取代肝癌等癌症治疗的传统方式。在这项研究中,开发了一种新的叶酸(FA)功能化和海藻酸盐(Alg)修饰的聚乳酸-羟基乙酸(PLGA)纳米复合材料,用于将阿霉素(Dox)递送到HepG2和Huh7肝癌细胞。合成纳米载体后,利用FT-IR、DLS、TGA、TEM等分析仪器对其进行表征。纳米尺寸(直径55 nm和85 nm),接近中性表面电荷,半球形形貌,成功合成。测定了DDS的Dox包封效率接近1%,并确定了DDS纳米载体的持续和ph敏感的药物释放行为。随后进行细胞活力试验,研究FA-PLGA-Dox-Alg对HepG2和Huh7细胞的抑制能力。400 nM浓度的FA-PLGA-Dox-Alg纳米载体作用HepG2和Huh7细胞24 h后,细胞存活率分别为12%和10%。肿瘤细胞处理24 h后100 nM观察IC50值。这些数据表明,制备的纳米载体有望成为治疗肝癌的DDS,并取代化疗等传统的癌症治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
期刊最新文献
Nanocodelivery of 5-Fluorouracil and Curcumin by RGD-Decorated Nanoliposomes Achieves Synergistic Chemotherapy for Breast Cancer Linum usitatissimum Delivery over Chitosan Nanobiopolymer: Enhanced Effects on Polycystic Ovary Syndrome Condition Liposomal-Naringenin Radiosensitizes Triple-Negative Breast Cancer MDA-MB-231 Cells In Vitro Biowaste Valorization of Palm Tree Phoenix dactylifera L. for Nanocellulose Production Chitosan–Aloe Vera Composition Loaded with Zinc Oxide Nanoparticles for Wound Healing: In Vitro and In Vivo Evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1