A general framework for the inclusion of time-varying and time-invariant covariates in latent state-trait models.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2023-10-01 Epub Date: 2023-07-20 DOI:10.1037/met0000592
Lara Oeltjen, Tobias Koch, Jana Holtmann, Fabian F Münch, Michael Eid, Fridtjof W Nussbeck
{"title":"A general framework for the inclusion of time-varying and time-invariant covariates in latent state-trait models.","authors":"Lara Oeltjen,&nbsp;Tobias Koch,&nbsp;Jana Holtmann,&nbsp;Fabian F Münch,&nbsp;Michael Eid,&nbsp;Fridtjof W Nussbeck","doi":"10.1037/met0000592","DOIUrl":null,"url":null,"abstract":"<p><p>Latent state-trait (LST) models are increasingly applied in psychology. Although existing LST models offer many possibilities for analyzing variability and change, they do not allow researchers to relate time-varying or time-invariant covariates, or a combination of both, to loading, intercept, and factor variance parameters in LST models. We present a general framework for the inclusion of nominal and/or continuous time-varying and time-invariant covariates in LST models. The new framework builds on modern LST theory and Bayesian moderated nonlinear factor analysis and is termed moderated nonlinear LST (MN-LST) framework. The MN-LST framework offers new modeling possibilities and allows for a fine-grained analysis of trait change, person-by-situation interaction effects, as well as inter- or intraindividual variability. The new MN-LST approach is compared to alternative modeling strategies. The advantages of the MN-LST approach are illustrated in an empirical application examining dyadic coping in romantic relationships. Finally, the advantages and limitations of the approach are discussed, and practical recommendations are provided. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"1005-1028"},"PeriodicalIF":7.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000592","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Latent state-trait (LST) models are increasingly applied in psychology. Although existing LST models offer many possibilities for analyzing variability and change, they do not allow researchers to relate time-varying or time-invariant covariates, or a combination of both, to loading, intercept, and factor variance parameters in LST models. We present a general framework for the inclusion of nominal and/or continuous time-varying and time-invariant covariates in LST models. The new framework builds on modern LST theory and Bayesian moderated nonlinear factor analysis and is termed moderated nonlinear LST (MN-LST) framework. The MN-LST framework offers new modeling possibilities and allows for a fine-grained analysis of trait change, person-by-situation interaction effects, as well as inter- or intraindividual variability. The new MN-LST approach is compared to alternative modeling strategies. The advantages of the MN-LST approach are illustrated in an empirical application examining dyadic coping in romantic relationships. Finally, the advantages and limitations of the approach are discussed, and practical recommendations are provided. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在潜在状态-特征模型中包含时变和时不变协变量的通用框架。
潜在状态特征(LST)模型在心理学中的应用越来越多。尽管现有的LST模型为分析可变性和变化提供了许多可能性,但它们不允许研究人员将时变或时不变协变量或两者的组合与LST模型中的加载、截距和因子方差参数联系起来。我们提出了一个在LST模型中包含名义和/或连续时变和时不变协变量的通用框架。新框架建立在现代LST理论和贝叶斯调节非线性因子分析的基础上,被称为调节非线性LST(MN-LST)框架。MN-LST框架提供了新的建模可能性,并允许对特征变化、逐个情境的交互效应以及个体间或个体内的变异性进行细粒度分析。将新的MN-LST方法与其他建模策略进行了比较。MN-LST方法的优点在一个研究浪漫关系中二元应对的实证应用中得到了说明。最后,讨论了该方法的优点和局限性,并提出了切实可行的建议。(PsycInfo数据库记录(c)2023 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. How to conduct an integrative mixed methods meta-analysis: A tutorial for the systematic review of quantitative and qualitative evidence. Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs. Data-driven covariate selection for confounding adjustment by focusing on the stability of the effect estimator. Estimating and investigating multiple constructs multiple indicators social relations models with and without roles within the traditional structural equation modeling framework: A tutorial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1