The combined effect of essential oils on wood physico-chemical properties and their antiadhesive activity against mold fungi: application of mixture design methodology.
{"title":"The combined effect of essential oils on wood physico-chemical properties and their antiadhesive activity against mold fungi: application of mixture design methodology.","authors":"Moulay Sadiki, Mounyr Balouiri, Soumya Elabed, Fadoua Bennouna, Mohammed Lachkar, Saad Ibnsouda Koraichi","doi":"10.1080/08927014.2023.2236029","DOIUrl":null,"url":null,"abstract":"<p><p>In the heritage field, the microbial adhesion on wood, and consequently the formation of biofilm led to inestimable losses of historical and cultural monuments. Thereby, this study aimed to examine the combined effect of <i>Thymus vulgaris, Myrtus communis,</i> and <i>Mentha pulegium</i> essential oils on wood surface physico-chemical properties, and to elaborate the optimal mixture using the mixture design approach coupled to the contact angle method. It was found that both wood hydrophobicity and electron donor character increased significantly after treatment using an optimal mixture containing 57% and 43% of <i>M. pulegium</i> and <i>M. communis</i> essential oils, respectively. The theoretical and experimental fungal adhesion on untreated and treated wood were also investigated. The results showed that the adhesion was favorable on untreated wood and reduced using the optimal mixture. Moreover, the experimental data demonstrated that the same mixture exhibited an antiadhesive efficacy effect with a reduction of 36-75% in adhesion.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 5","pages":"537-554"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2236029","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the heritage field, the microbial adhesion on wood, and consequently the formation of biofilm led to inestimable losses of historical and cultural monuments. Thereby, this study aimed to examine the combined effect of Thymus vulgaris, Myrtus communis, and Mentha pulegium essential oils on wood surface physico-chemical properties, and to elaborate the optimal mixture using the mixture design approach coupled to the contact angle method. It was found that both wood hydrophobicity and electron donor character increased significantly after treatment using an optimal mixture containing 57% and 43% of M. pulegium and M. communis essential oils, respectively. The theoretical and experimental fungal adhesion on untreated and treated wood were also investigated. The results showed that the adhesion was favorable on untreated wood and reduced using the optimal mixture. Moreover, the experimental data demonstrated that the same mixture exhibited an antiadhesive efficacy effect with a reduction of 36-75% in adhesion.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.