Targeted next-generation sequencing of genes involved in Warfarin Pharmacodynamics and pharmacokinetics pathways using the Saudi Warfarin Pharmacogenetic study (SWAP)
Maha Al Ammari, Bader Almuzzaini, Khalid Al Sulaiman, Mohammed AlBalwi, Khizra Sultana, Ibrahim B. Alabdulkareem, Nada S. Almakhlafi, Anoud Al Humoud, Mohammed Waheeby, Munee Balla, Asma Al Shehri, Adel Alharf, Jahad Alghamdi
{"title":"Targeted next-generation sequencing of genes involved in Warfarin Pharmacodynamics and pharmacokinetics pathways using the Saudi Warfarin Pharmacogenetic study (SWAP)","authors":"Maha Al Ammari, Bader Almuzzaini, Khalid Al Sulaiman, Mohammed AlBalwi, Khizra Sultana, Ibrahim B. Alabdulkareem, Nada S. Almakhlafi, Anoud Al Humoud, Mohammed Waheeby, Munee Balla, Asma Al Shehri, Adel Alharf, Jahad Alghamdi","doi":"10.1038/s41397-023-00300-3","DOIUrl":null,"url":null,"abstract":"Warfarin is an oral anticoagulant commonly used for treatment and prophylaxis against thromboembolic events. Warfarins’s narrow therapeutic index window is one of the main challenges in clinical practice; thus, it requires frequent monitoring and dose adjustment to maintain patients’ therapeutic range. Warfarin dose variation and response are attributed to several inter-and intra-individuals factors, including genetic variants in enzymes involved in warfarin pharmacokinetics (PK) and pharmacodynamics (PD) pathways. Thus, we aim to utilize the next-generation sequencing (NGS) approach to identify rare and common genetic variants that might be associated with warfarin responsiveness. A predesigned NGS panel that included 16 genes involved in Warfarin PK/PD pathways was used to sequence 786 patients from the Saudi Warfarin Pharmacogenetic Cohort (SWAP). Identified variants were annotated using several annotation tools to identify the pathogenicity and allele frequencies of these variants. We conducted variants-level association tests with warfarin dose. We identified 710 variants within the sequenced genes; 19% were novel variants, with the vast majority being scarce variants. The genetic association tests showed that VKORC1 (rs9923231, and rs61742245), CYP2C9 (rs98332238, rs9332172, rs1057910, rs9332230, rs1799853, rs1057911, and rs9332119), CYP2C19 (rs28399511, and rs3758581), and CYP2C8 (rs11572080 and rs10509681) were significantly associated with warfarin weekly dose. Our model included genetics, and non-genetic factors explained 40.1% of warfarin dose variation. The study identifies novel variants associated with warfarin dose in the Saudi population. These variants are more likely to be population-specific variants, suggesting that population-specific studies should be conducted before adopting a universal warfarin genotype-guided dosing algorithm.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"23 4","pages":"82-88"},"PeriodicalIF":2.9000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics Journal","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41397-023-00300-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Warfarin is an oral anticoagulant commonly used for treatment and prophylaxis against thromboembolic events. Warfarins’s narrow therapeutic index window is one of the main challenges in clinical practice; thus, it requires frequent monitoring and dose adjustment to maintain patients’ therapeutic range. Warfarin dose variation and response are attributed to several inter-and intra-individuals factors, including genetic variants in enzymes involved in warfarin pharmacokinetics (PK) and pharmacodynamics (PD) pathways. Thus, we aim to utilize the next-generation sequencing (NGS) approach to identify rare and common genetic variants that might be associated with warfarin responsiveness. A predesigned NGS panel that included 16 genes involved in Warfarin PK/PD pathways was used to sequence 786 patients from the Saudi Warfarin Pharmacogenetic Cohort (SWAP). Identified variants were annotated using several annotation tools to identify the pathogenicity and allele frequencies of these variants. We conducted variants-level association tests with warfarin dose. We identified 710 variants within the sequenced genes; 19% were novel variants, with the vast majority being scarce variants. The genetic association tests showed that VKORC1 (rs9923231, and rs61742245), CYP2C9 (rs98332238, rs9332172, rs1057910, rs9332230, rs1799853, rs1057911, and rs9332119), CYP2C19 (rs28399511, and rs3758581), and CYP2C8 (rs11572080 and rs10509681) were significantly associated with warfarin weekly dose. Our model included genetics, and non-genetic factors explained 40.1% of warfarin dose variation. The study identifies novel variants associated with warfarin dose in the Saudi population. These variants are more likely to be population-specific variants, suggesting that population-specific studies should be conducted before adopting a universal warfarin genotype-guided dosing algorithm.
期刊介绍:
The Pharmacogenomics Journal is a print and electronic journal, which is dedicated to the rapid publication of original research on pharmacogenomics and its clinical applications.
Key areas of coverage include:
Personalized medicine
Effects of genetic variability on drug toxicity and efficacy
Identification and functional characterization of polymorphisms relevant to drug action
Pharmacodynamic and pharmacokinetic variations and drug efficacy
Integration of new developments in the genome project and proteomics into clinical medicine, pharmacology, and therapeutics
Clinical applications of genomic science
Identification of novel genomic targets for drug development
Potential benefits of pharmacogenomics.