James M Borg, Andrew Buskell, Rohan Kapitany, Simon T Powers, Eva Reindl, Claudio Tennie
{"title":"Evolved Open-Endedness in Cultural Evolution: A New Dimension in Open-Ended Evolution Research.","authors":"James M Borg, Andrew Buskell, Rohan Kapitany, Simon T Powers, Eva Reindl, Claudio Tennie","doi":"10.1162/artl_a_00406","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of Artificial Life research, as articulated by Chris Langton, is \"to contribute to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be.\" The study and pursuit of open-ended evolution in artificial evolutionary systems exemplify this goal. However, open-ended evolution research is hampered by two fundamental issues: the struggle to replicate open-endedness in an artificial evolutionary system and our assumption that we only have one system (genetic evolution) from which to draw inspiration. We argue not only that cultural evolution should be seen as another real-world example of an open-ended evolutionary system but that the unique qualities seen in cultural evolution provide us with a new perspective from which we can assess the fundamental properties of, and ask new questions about, open-ended evolutionary systems, especially with regard to evolved open-endedness and transitions from bounded to unbounded evolution. Here we provide an overview of culture as an evolutionary system, highlight the interesting case of human cultural evolution as an open-ended evolutionary system, and contextualize cultural evolution by developing a new framework of (evolved) open-ended evolution. We go on to provide a set of new questions that can be asked once we consider cultural evolution within the framework of open-ended evolution and introduce new insights that we may be able to gain about evolved open-endedness as a result of asking these questions.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"417-438"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00406","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of Artificial Life research, as articulated by Chris Langton, is "to contribute to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be." The study and pursuit of open-ended evolution in artificial evolutionary systems exemplify this goal. However, open-ended evolution research is hampered by two fundamental issues: the struggle to replicate open-endedness in an artificial evolutionary system and our assumption that we only have one system (genetic evolution) from which to draw inspiration. We argue not only that cultural evolution should be seen as another real-world example of an open-ended evolutionary system but that the unique qualities seen in cultural evolution provide us with a new perspective from which we can assess the fundamental properties of, and ask new questions about, open-ended evolutionary systems, especially with regard to evolved open-endedness and transitions from bounded to unbounded evolution. Here we provide an overview of culture as an evolutionary system, highlight the interesting case of human cultural evolution as an open-ended evolutionary system, and contextualize cultural evolution by developing a new framework of (evolved) open-ended evolution. We go on to provide a set of new questions that can be asked once we consider cultural evolution within the framework of open-ended evolution and introduce new insights that we may be able to gain about evolved open-endedness as a result of asking these questions.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.