Binding the Person-Specific Approach to Modern AI in the Human Screenome Project: Moving past Generalizability to Transferability.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2024-11-01 Epub Date: 2023-07-13 DOI:10.1080/00273171.2023.2229305
Nilam Ram, Nick Haber, Thomas N Robinson, Byron Reeves
{"title":"Binding the Person-Specific Approach to Modern AI in the Human Screenome Project: Moving past Generalizability to Transferability.","authors":"Nilam Ram, Nick Haber, Thomas N Robinson, Byron Reeves","doi":"10.1080/00273171.2023.2229305","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in ability to comprehensively record individuals' digital lives and in AI modeling of those data facilitate new possibilities for describing, predicting, and generating a wide variety of behavioral processes. In this paper, we consider these advances from a person-specific perspective, including whether the pervasive concerns about <i>generalizability</i> of results might be productively reframed with respect to <i>transferability</i> of models, and how self-supervision and new deep neural network architectures that facilitate transfer learning can be applied in a person-specific way to the super-intensive longitudinal data arriving in the Human Screenome Project. In developing the possibilities, we suggest Molenaar add a statement to the person-specific Manifesto - \"In short, the concerns about <i>generalizability</i> commonly leveled at the person-specific paradigm are unfounded and can be fully and completely replaced with discussion and demonstrations of <i>transferability</i>.\"</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1211-1219"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2229305","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in ability to comprehensively record individuals' digital lives and in AI modeling of those data facilitate new possibilities for describing, predicting, and generating a wide variety of behavioral processes. In this paper, we consider these advances from a person-specific perspective, including whether the pervasive concerns about generalizability of results might be productively reframed with respect to transferability of models, and how self-supervision and new deep neural network architectures that facilitate transfer learning can be applied in a person-specific way to the super-intensive longitudinal data arriving in the Human Screenome Project. In developing the possibilities, we suggest Molenaar add a statement to the person-specific Manifesto - "In short, the concerns about generalizability commonly leveled at the person-specific paradigm are unfounded and can be fully and completely replaced with discussion and demonstrations of transferability."

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在人类屏幕组项目中将针对具体个人的方法与现代人工智能结合起来:从通用性到可转移性。
全面记录个人数字生活的能力以及对这些数据进行人工智能建模方面的进步,为描述、预测和生成各种行为过程提供了新的可能性。在本文中,我们将从特定个人的角度来考虑这些进步,包括是否可以从模型的可迁移性角度来有效地重构对结果通用性的普遍担忧,以及如何将自我监督和促进迁移学习的新型深度神经网络架构以特定个人的方式应用于人类屏幕组项目中获得的超密集纵向数据。在开发这些可能性时,我们建议莫莱纳尔在 "特定人群宣言 "中添加一句话--"简而言之,通常对特定人群范式的可推广性的担忧是毫无根据的,完全可以用可迁移性的讨论和展示来取代"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data. Quantifying Evidence for-and against-Granger Causality with Bayes Factors. Person Specific Parameter Heterogeneity in the 2PL IRT Model. Environment-by-PGS Interaction in the Classical Twin Design: An Application to Childhood Anxiety and Negative Affect. Homogeneity Assumptions in the Analysis of Dynamic Processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1