Engineered Bio-Heterojunction Confers Extra- and Intracellular Bacterial Ferroptosis and Hunger-Triggered Cell Protection for Diabetic Wound Repair

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2023-08-01 DOI:10.1002/adma.202305277
Wenyu Dai, Rui Shu, Fan Yang, Bin Li, Hannah M. Johnson, Sheng Yu, Hang Yang, Yau Kei Chan, Weizhong Yang, Ding Bai, Yi Deng
{"title":"Engineered Bio-Heterojunction Confers Extra- and Intracellular Bacterial Ferroptosis and Hunger-Triggered Cell Protection for Diabetic Wound Repair","authors":"Wenyu Dai,&nbsp;Rui Shu,&nbsp;Fan Yang,&nbsp;Bin Li,&nbsp;Hannah M. Johnson,&nbsp;Sheng Yu,&nbsp;Hang Yang,&nbsp;Yau Kei Chan,&nbsp;Weizhong Yang,&nbsp;Ding Bai,&nbsp;Yi Deng","doi":"10.1002/adma.202305277","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterial-mediated ferroptosis has garnered considerable interest in the antibacterial field, as it invokes the disequilibrium of ion homeostasis and boosts lipid peroxidation in extra- and intracellular bacteria. However, current ferroptosis-associated antibacterial strategies indiscriminately pose damage to healthy cells, ultimately compromising their biocompatibility. To address this daunting issue, this work has designed a precise ferroptosis bio-heterojunction (F-bio-HJ) consisting of Fe<sub>2</sub>O<sub>3</sub>, Ti<sub>3</sub>C<sub>2</sub>-MXene, and glucose oxidase (GOx) to induce extra-intracellular bacteria-targeted ferroptosis for infected diabetic cutaneous regeneration. Fe<sub>2</sub>O<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>-MXene@GOx (FMG) catalytically generates a considerable amount of ROS which assaults the membrane of extracellular bacteria, facilitating the permeation of synchronously generated Fe<sup>2+</sup>/Fe<sup>3+</sup> into bacteria under near-infrared (NIR) irradiation, causing planktonic bacterial death via ferroptosis, Fe<sup>2+</sup> overload, and lipid peroxidation. Additionally, FMG facilitates intracellular bacterial ferroptosis by transporting Fe<sup>2+</sup> into intracellular bacteria via inward ferroportin (FPN). With GOx consuming glucose, FMG creates hunger protection which helps macrophages escape cell ferroptosis by activating the adenosine 5’-monophosphate (AMP) activated protein kinase (AMPK) pathway. In vivo results authenticate that FMG boosts diabetic infectious cutaneous regeneration without triggering ferroptosis in normal cells. As envisaged, the proposed tactic provides a promising approach to combat intractable infections by precisely terminating extra-intracellular infection via steerable ferroptosis, thereby markedly elevating the biocompatibility of therapeutic ferroptosis-mediated strategies.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202305277","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomaterial-mediated ferroptosis has garnered considerable interest in the antibacterial field, as it invokes the disequilibrium of ion homeostasis and boosts lipid peroxidation in extra- and intracellular bacteria. However, current ferroptosis-associated antibacterial strategies indiscriminately pose damage to healthy cells, ultimately compromising their biocompatibility. To address this daunting issue, this work has designed a precise ferroptosis bio-heterojunction (F-bio-HJ) consisting of Fe2O3, Ti3C2-MXene, and glucose oxidase (GOx) to induce extra-intracellular bacteria-targeted ferroptosis for infected diabetic cutaneous regeneration. Fe2O3/Ti3C2-MXene@GOx (FMG) catalytically generates a considerable amount of ROS which assaults the membrane of extracellular bacteria, facilitating the permeation of synchronously generated Fe2+/Fe3+ into bacteria under near-infrared (NIR) irradiation, causing planktonic bacterial death via ferroptosis, Fe2+ overload, and lipid peroxidation. Additionally, FMG facilitates intracellular bacterial ferroptosis by transporting Fe2+ into intracellular bacteria via inward ferroportin (FPN). With GOx consuming glucose, FMG creates hunger protection which helps macrophages escape cell ferroptosis by activating the adenosine 5’-monophosphate (AMP) activated protein kinase (AMPK) pathway. In vivo results authenticate that FMG boosts diabetic infectious cutaneous regeneration without triggering ferroptosis in normal cells. As envisaged, the proposed tactic provides a promising approach to combat intractable infections by precisely terminating extra-intracellular infection via steerable ferroptosis, thereby markedly elevating the biocompatibility of therapeutic ferroptosis-mediated strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工程生物异质结赋予细胞外和细胞内细菌铁凋亡和饥饿触发的细胞保护功能,促进糖尿病伤口修复
纳米材料介导的铁突变引起了离子平衡的失调,并促进了细胞内外细菌的脂质过氧化反应,因此在抗菌领域引起了极大的兴趣。然而,目前与铁突变相关的抗菌策略会不加区分地对健康细胞造成损害,最终损害细胞的生物相容性。为了解决这个棘手的问题,这项研究设计了一种由 Fe2 O3、Ti3 C2 -MXene 和葡萄糖氧化酶(GOx)组成的精确铁突变生物异质结(F-bio-HJ),以诱导细胞外细菌靶向铁突变,促进受感染的糖尿病皮肤再生。在近红外(NIR)照射下,Fe2 O3 /Ti3 C2 -MXene@GOx (FMG)催化产生大量的 ROS,攻击细胞外细菌膜,促进同步产生的 Fe2+ /Fe3+ 向细菌内渗透,通过铁蛋白沉降、Fe2+ 过载和脂质过氧化导致浮游细菌死亡。此外,FMG 还能通过内向铁蛋白(FPN)将 Fe2+ 运送到细胞内细菌体内,从而促进细胞内细菌的铁突变。当 GOx 消耗葡萄糖时,FMG 会产生饥饿保护作用,通过激活 5'-monophosphate (AMP) 活化蛋白激酶 (AMPK) 通路,帮助巨噬细胞摆脱细胞铁嗜性。体内实验结果证明,FMG 可促进糖尿病感染性皮肤再生,而不会引发正常细胞的铁蜕变。正如所设想的那样,所提出的策略通过可转向的铁蛋白沉积精确终止细胞外感染,从而显著提高了铁蛋白沉积介导的治疗策略的生物相容性,为抗击棘手的感染提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Heterogeneous Integration of Wide Bandgap Semiconductors and 2D Materials: Processes, Applications, and Perspectives Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting Intrinsic Narrowband Blue Phosphorescent Materials and Their Applications in 3D Printed Self-monitoring Microfluidic Chips Carbon-based Flame Retardants for Polymers: A Bottom-up Review (Adv. Mater. 42/2024) Digitalization of Colorimetric Sensor Technologies for Food Safety (Adv. Mater. 42/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1