Autoregressive optimal transport models.

IF 3.1 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series B-Statistical Methodology Pub Date : 2023-07-01 DOI:10.1093/jrsssb/qkad051
Changbo Zhu, Hans-Georg Müller
{"title":"Autoregressive optimal transport models.","authors":"Changbo Zhu,&nbsp;Hans-Georg Müller","doi":"10.1093/jrsssb/qkad051","DOIUrl":null,"url":null,"abstract":"<p><p>Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of optimal transport maps. The autoregressive transport models that we introduce here are based on regressing optimal transport maps on each other, where predictors can be transport maps from an overall barycenter to a current distribution or transport maps between past consecutive distributions of the distributional time series. Autoregressive transport models and their associated distributional regression models specify the link between predictor and response transport maps by moving along geodesics in Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random functions. <i>Journal of Applied Probability 41</i>, 425-436)], using properties of iterated random functions. We also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In addition to simulations, the proposed models are illustrated with distributional time series of house prices across U.S. counties and annual summer temperature distributions.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 3","pages":"1012-1033"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/84/qkad051.PMC10376456.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad051","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of optimal transport maps. The autoregressive transport models that we introduce here are based on regressing optimal transport maps on each other, where predictors can be transport maps from an overall barycenter to a current distribution or transport maps between past consecutive distributions of the distributional time series. Autoregressive transport models and their associated distributional regression models specify the link between predictor and response transport maps by moving along geodesics in Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random functions. Journal of Applied Probability 41, 425-436)], using properties of iterated random functions. We also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In addition to simulations, the proposed models are illustrated with distributional time series of house prices across U.S. counties and annual summer temperature distributions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自回归最优运输模型。
由等间隔时间点索引的单变量分布序列在应用中无处不在,它们的分析构成了分布数据分析这一新兴领域的挑战之一。为了量化这种分布时间序列,我们提出了一类在最优运输地图空间中运行的固有自回归模型。我们在这里介绍的自回归输运模型是基于彼此之间最优输运图的回归,其中预测因子可以是从整体重心到当前分布的输运图,也可以是分布时间序列的过去连续分布之间的输运图。自回归输运模型及其相关的分布回归模型通过在Wasserstein空间中沿测地线移动来指定预测器和响应输运图之间的联系。这些模型是经典自回归模型在欧几里得空间中的自然延伸。在Wu & Shao[2004]迭代随机函数的极限定理的几何矩收缩条件下,证明了自回归输运模型的唯一平稳解的存在。应用概率学报,41,425-436)],使用迭代随机函数的性质。我们还讨论了一阶自回归输运模型的变系数模型的推广。除了模拟之外,所提出的模型还用美国各县房价的分布时间序列和每年夏季温度的分布来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
83
审稿时长
>12 weeks
期刊介绍: Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.
期刊最新文献
Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation. Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease. GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments. Doubly robust calibration of prediction sets under covariate shift. Gradient synchronization for multivariate functional data, with application to brain connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1