TextConvoNet: a convolutional neural network based architecture for text classification.

Sanskar Soni, Satyendra Singh Chouhan, Santosh Singh Rathore
{"title":"<i>TextConvoNet</i>: a convolutional neural network based architecture for text classification.","authors":"Sanskar Soni,&nbsp;Satyendra Singh Chouhan,&nbsp;Santosh Singh Rathore","doi":"10.1007/s10489-022-04221-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents, <i>TextConvoNet</i>, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where each filter specializes in extracting <i>n-grams</i> features of a particular input word embeddings (Sentence Matrix). These features can be termed as intra-sentence <i>n-gram</i> features. To the best of our knowledge, all the existing CNN models for text classification are based on the aforementioned concept. The presented <i>TextConvoNet</i> not only extracts the intra-sentence <i>n-gram</i> features but also captures the inter-sentence <i>n-gram</i> features in input text data. It uses an alternative approach for input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. We perform an experimental study on five binary and multi-class classification datasets and evaluate the performance of the <i>TextConvoNet</i> for text classification. The results are evaluated using eight performance measures, accuracy, precision, recall, f1-score, specificity, gmean1, gmean2, and Mathews correlation coefficient (MCC). Furthermore, we extensively compared presented <i>TextConvoNet</i> with machine learning, deep learning, and attention-based models. The experimental results evidenced that the presented <i>TextConvoNet</i> outperformed and yielded better performance than the other used models for text classification purposes.</p>","PeriodicalId":72260,"journal":{"name":"Applied intelligence (Dordrecht, Netherlands)","volume":"53 11","pages":"14249-14268"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589611/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied intelligence (Dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10489-022-04221-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents, TextConvoNet, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where each filter specializes in extracting n-grams features of a particular input word embeddings (Sentence Matrix). These features can be termed as intra-sentence n-gram features. To the best of our knowledge, all the existing CNN models for text classification are based on the aforementioned concept. The presented TextConvoNet not only extracts the intra-sentence n-gram features but also captures the inter-sentence n-gram features in input text data. It uses an alternative approach for input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. We perform an experimental study on five binary and multi-class classification datasets and evaluate the performance of the TextConvoNet for text classification. The results are evaluated using eight performance measures, accuracy, precision, recall, f1-score, specificity, gmean1, gmean2, and Mathews correlation coefficient (MCC). Furthermore, we extensively compared presented TextConvoNet with machine learning, deep learning, and attention-based models. The experimental results evidenced that the presented TextConvoNet outperformed and yielded better performance than the other used models for text classification purposes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TextConvoNet:一种基于卷积神经网络的文本分类架构。
本文提出了一种新的基于卷积神经网络(CNN)的结构,TextConvoNet,用于解决二进制和多类文本分类问题。大多数现有的基于CNN的模型使用一维卷积滤波器,其中每个滤波器专门提取特定输入词嵌入的n-gram特征(句子矩阵)。这些特征可以称为句内n-gram特征。据我们所知,所有现有的用于文本分类的CNN模型都是基于上述概念的。所提出的TextConvoNet不仅提取了输入文本数据中的句内n-gram特征,而且捕获了句间n-gram特征。它使用输入矩阵表示的替代方法,并对输入应用二维多尺度卷积运算。我们在五个二进制和多类分类数据集上进行了实验研究,并评估了TextConvoNet在文本分类方面的性能。使用八项性能指标评估结果,准确性、精密度、召回率、f1评分、特异性、gmean1、gmean2和Mathews相关系数(MCC)。此外,我们将所提出的TextConvoNet与机器学习、深度学习和基于注意力的模型进行了广泛的比较。实验结果表明,与其他用于文本分类的模型相比,所提出的TextConvoNet表现出色,性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels. DC-CNN: Dual-channel Convolutional Neural Networks with attention-pooling for fake news detection. A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification. A novel hybrid multi-thread metaheuristic approach for fake news detection in social media. Front-end deep learning web apps development and deployment: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1