k-SALSA: k-anonymous synthetic averaging of retinal images via local style alignment.

Minkyu Jeon, Hyeonjin Park, Hyunwoo J Kim, Michael Morley, Hyunghoon Cho
{"title":"<i>k</i>-SALSA: <i>k</i>-anonymous synthetic averaging of retinal images via local style alignment.","authors":"Minkyu Jeon,&nbsp;Hyeonjin Park,&nbsp;Hyunwoo J Kim,&nbsp;Michael Morley,&nbsp;Hyunghoon Cho","doi":"10.1007/978-3-031-19803-8_39","DOIUrl":null,"url":null,"abstract":"<p><p>The application of modern machine learning to retinal image analyses offers valuable insights into a broad range of human health conditions beyond ophthalmic diseases. Additionally, data sharing is key to fully realizing the potential of machine learning models by providing a rich and diverse collection of training data. However, the personallyidentifying nature of retinal images, encompassing the unique vascular structure of each individual, often prevents this data from being shared openly. While prior works have explored image de-identification strategies based on synthetic averaging of images in other domains (e.g. facial images), existing techniques face difficulty in preserving both privacy and clinical utility in retinal images, as we demonstrate in our work. We therefore introduce <math><mi>k</mi></math>-SALSA, a generative adversarial network (GAN)-based framework for synthesizing retinal fundus images that summarize a given private dataset while satisfying the privacy notion of <math><mi>k</mi></math>-anonymity. <math><mi>k</mi></math>-SALSA brings together state-of-the-art techniques for training and inverting GANs to achieve practical performance on retinal images. Furthermore, <math><mi>k</mi></math>-SALSA leverages a new technique, called local style alignment, to generate a synthetic average that maximizes the retention of fine-grain visual patterns in the source images, thus improving the clinical utility of the generated images. On two benchmark datasets of diabetic retinopathy (EyePACS and APTOS), we demonstrate our improvement upon existing methods with respect to image fidelity, classification performance, and mitigation of membership inference attacks. Our work represents a step toward broader sharing of retinal images for scientific collaboration. Code is available at https://github.com/hcholab/k-salsa.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388376/pdf/nihms-1918399.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-19803-8_39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The application of modern machine learning to retinal image analyses offers valuable insights into a broad range of human health conditions beyond ophthalmic diseases. Additionally, data sharing is key to fully realizing the potential of machine learning models by providing a rich and diverse collection of training data. However, the personallyidentifying nature of retinal images, encompassing the unique vascular structure of each individual, often prevents this data from being shared openly. While prior works have explored image de-identification strategies based on synthetic averaging of images in other domains (e.g. facial images), existing techniques face difficulty in preserving both privacy and clinical utility in retinal images, as we demonstrate in our work. We therefore introduce k-SALSA, a generative adversarial network (GAN)-based framework for synthesizing retinal fundus images that summarize a given private dataset while satisfying the privacy notion of k-anonymity. k-SALSA brings together state-of-the-art techniques for training and inverting GANs to achieve practical performance on retinal images. Furthermore, k-SALSA leverages a new technique, called local style alignment, to generate a synthetic average that maximizes the retention of fine-grain visual patterns in the source images, thus improving the clinical utility of the generated images. On two benchmark datasets of diabetic retinopathy (EyePACS and APTOS), we demonstrate our improvement upon existing methods with respect to image fidelity, classification performance, and mitigation of membership inference attacks. Our work represents a step toward broader sharing of retinal images for scientific collaboration. Code is available at https://github.com/hcholab/k-salsa.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k-SALSA:通过局部风格对齐的k-匿名视网膜图像合成平均。
现代机器学习在视网膜图像分析中的应用为眼科疾病以外的广泛的人类健康状况提供了有价值的见解。此外,数据共享是通过提供丰富多样的训练数据集来充分发挥机器学习模型潜力的关键。然而,视网膜图像的个人识别性质,包括每个人独特的血管结构,经常阻止这些数据被公开共享。虽然之前的工作已经探索了基于其他领域(例如面部图像)图像合成平均的图像去识别策略,但正如我们在工作中所展示的那样,现有技术在保护视网膜图像的隐私和临床实用性方面面临困难。因此,我们引入了k-SALSA,这是一种基于生成对抗网络(GAN)的框架,用于合成视网膜眼底图像,该图像总结了给定的私有数据集,同时满足k-匿名的隐私概念。k-SALSA汇集了最先进的训练和倒转gan技术,以实现视网膜图像的实际性能。此外,k-SALSA利用一种称为局部风格对齐的新技术来生成合成平均值,最大限度地保留源图像中的细颗粒视觉模式,从而提高生成图像的临床效用。在糖尿病视网膜病变的两个基准数据集(EyePACS和APTOS)上,我们展示了我们在图像保真度、分类性能和减轻隶属度推理攻击方面对现有方法的改进。我们的工作代表了为科学合作更广泛地共享视网膜图像的一步。代码可从https://github.com/hcholab/k-salsa获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual-Stream Knowledge-Preserving Hashing for Unsupervised Video Retrieval Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding Rethinking Confidence Calibration for Failure Prediction PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1