{"title":"Quenching effect of cerium oxide nanoparticles on singlet oxygen: validation of the potential for reaction with multiple reactive oxygen species.","authors":"Yukihiro Ogawa, Tsunetaka Kawaguchi, Mami Tanaka, Akiko Hashimoto, Koji Fukui, Naofumi Uekawa, Toshihiko Ozawa, Toshiaki Kamachi, Masahiro Kohno","doi":"10.3164/jcbn.22-68","DOIUrl":null,"url":null,"abstract":"<p><p>Here we studied cerium oxide nanoparticles (nanoceria) as an agent for the future treatment of oxidative damage by validating and evaluating its scavenging activity towards reactive oxygen species (ROS) <i>in vitro</i>. Nanoceria has been shown to mimic the activities of superoxide dismutase and catalase, degrading superoxide (O<sub>2</sub><sup>•-</sup>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). We examined the antioxidative activity of nanoceria, focusing on its ability to quench singlet oxygen (<sup>1</sup>O<sub>2</sub>) in an aqueous solution. Electron paramagnetic resonance (EPR) was used to determine the rates of second-order reactions between nanoceria and three ROS (<sup>1</sup>O<sub>2</sub>, O<sub>2</sub><sup>•-</sup>, and H<sub>2</sub>O<sub>2</sub>) in aqueous solution, and its antioxidative abilities were demonstrated. Nanoceria shows a wide range of ultraviolet-light absorption bands and thus <sup>1</sup>O<sub>2</sub> was produced directly in a nanoceria suspension using high-frequency ultrasound. The quenching or scavenging abilities of nanoceria for <sup>1</sup>O<sub>2</sub> and hypoxanthine-xanthine oxidase reaction-derived O<sub>2</sub><sup>•-</sup> were examined by EPR spin-trapping methods, and the consumption of H<sub>2</sub>O<sub>2</sub> was estimated by the EPR oximetry method. Our results indicated that nanoceria interact not only with two previously reported ROS but also with <sup>1</sup>O<sub>2</sub>. Nanoceria were shown to degrade O<sub>2</sub><sup>•-</sup> and H<sub>2</sub>O<sub>2</sub>, and their ability to quench <sup>1</sup>O<sub>2</sub> may be one mechanism by which they protect against oxidative damage such as inflammation.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"73 1","pages":"1-8"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/6c/jcbn22-68.PMC10390806.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.22-68","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 1
Abstract
Here we studied cerium oxide nanoparticles (nanoceria) as an agent for the future treatment of oxidative damage by validating and evaluating its scavenging activity towards reactive oxygen species (ROS) in vitro. Nanoceria has been shown to mimic the activities of superoxide dismutase and catalase, degrading superoxide (O2•-) and hydrogen peroxide (H2O2). We examined the antioxidative activity of nanoceria, focusing on its ability to quench singlet oxygen (1O2) in an aqueous solution. Electron paramagnetic resonance (EPR) was used to determine the rates of second-order reactions between nanoceria and three ROS (1O2, O2•-, and H2O2) in aqueous solution, and its antioxidative abilities were demonstrated. Nanoceria shows a wide range of ultraviolet-light absorption bands and thus 1O2 was produced directly in a nanoceria suspension using high-frequency ultrasound. The quenching or scavenging abilities of nanoceria for 1O2 and hypoxanthine-xanthine oxidase reaction-derived O2•- were examined by EPR spin-trapping methods, and the consumption of H2O2 was estimated by the EPR oximetry method. Our results indicated that nanoceria interact not only with two previously reported ROS but also with 1O2. Nanoceria were shown to degrade O2•- and H2O2, and their ability to quench 1O2 may be one mechanism by which they protect against oxidative damage such as inflammation.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.