Jianying Yang, Lei Zhang, Zhiguo Huo, Peijuan Wang, Dingrong Wu, Yuping Ma
{"title":"Disaster process–based spatiotemporal characteristics of apricot frost in the warm temperate zone (WTZ), China","authors":"Jianying Yang, Lei Zhang, Zhiguo Huo, Peijuan Wang, Dingrong Wu, Yuping Ma","doi":"10.1007/s00484-023-02534-z","DOIUrl":null,"url":null,"abstract":"<div><p>Frost stress is a major environmental factor that limits apricot growth in the warm temperate zone (WTZ) of China, and is always triggered by extreme low temperature weather processes. In this study, the characteristics of the apricot frost processes <i>f</i>(<i>D</i>, <i>T</i><sub>cum</sub>), which were identified from historical disaster representation, were analyzed and apricot frost evaluation indicators were developed, thus facilitating the process-based assessment and spatiotemporal analysis of apricot frost processes. Periods of low temperature that persist for 1~2, 3, and ≥4 days (i.e., duration days, <i>D</i>) provide the initial identification indicator for light, moderate, and severe apricot frost. The threshold ranges for <i>T</i><sub>cum</sub> are 0~3.9, 9.2~12.0, and >16.2 for <i>D</i> values of 1~2, 3, and ≥4, respectively. The northwest of the WTZ is dominated by apricot frost, with approximately 80% of apricot frost being light, followed by moderate and severe. Regional apricot frost exhibited a significant decreasing trend over the last four decades. A total of 29.65% of stations, which were mainly located in the northwest and middle parts of the study region, detected an increasing trend in apricot frost. The results provide technical support for targeted apricot frost level detection, and the process-based spatiotemporal characteristics of apricot frost can provide basic information for the prevention and mitigation of apricot frost.</p></div>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":"67 11","pages":"1733 - 1744"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00484-023-02534-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Frost stress is a major environmental factor that limits apricot growth in the warm temperate zone (WTZ) of China, and is always triggered by extreme low temperature weather processes. In this study, the characteristics of the apricot frost processes f(D, Tcum), which were identified from historical disaster representation, were analyzed and apricot frost evaluation indicators were developed, thus facilitating the process-based assessment and spatiotemporal analysis of apricot frost processes. Periods of low temperature that persist for 1~2, 3, and ≥4 days (i.e., duration days, D) provide the initial identification indicator for light, moderate, and severe apricot frost. The threshold ranges for Tcum are 0~3.9, 9.2~12.0, and >16.2 for D values of 1~2, 3, and ≥4, respectively. The northwest of the WTZ is dominated by apricot frost, with approximately 80% of apricot frost being light, followed by moderate and severe. Regional apricot frost exhibited a significant decreasing trend over the last four decades. A total of 29.65% of stations, which were mainly located in the northwest and middle parts of the study region, detected an increasing trend in apricot frost. The results provide technical support for targeted apricot frost level detection, and the process-based spatiotemporal characteristics of apricot frost can provide basic information for the prevention and mitigation of apricot frost.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.