Feature-guided deep learning reduces signal loss and increases lesion CNR in diffusion-weighted imaging of the liver

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2024-05-01 DOI:10.1016/j.zemedi.2023.07.005
Tobit Führes , Marc Saake , Jennifer Lorenz , Hannes Seuss , Sebastian Bickelhaupt , Michael Uder , Frederik Bernd Laun
{"title":"Feature-guided deep learning reduces signal loss and increases lesion CNR in diffusion-weighted imaging of the liver","authors":"Tobit Führes ,&nbsp;Marc Saake ,&nbsp;Jennifer Lorenz ,&nbsp;Hannes Seuss ,&nbsp;Sebastian Bickelhaupt ,&nbsp;Michael Uder ,&nbsp;Frederik Bernd Laun","doi":"10.1016/j.zemedi.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><h3><strong>Purpose</strong></h3><p>This research aims to develop a feature-guided deep learning approach and compare it with an optimized conventional post-processing algorithm in order to enhance the image quality of diffusion-weighted liver images and, in particular, to reduce the pulsation-induced signal loss occurring predominantly in the left liver lobe.</p></div><div><h3><strong>Methods</strong></h3><p>Data from 40 patients with liver lesions were used. For the conventional approach, the best-suited out of five examined algorithms was chosen. For the deep learning approach, a U-Net was trained. Instead of learning “gold-standard” target images, the network was trained to optimize four image features (lesion CNR, vessel darkness, data consistency, and pulsation artifact reduction), which could be assessed quantitatively using manually drawn ROIs. A quality score was calculated from these four features. As an additional quality assessment, three radiologists rated different features of the resulting images.</p></div><div><h3><strong>Results</strong></h3><p>The conventional approach could substantially increase the lesion CNR and reduce the pulsation-induced signal loss. However, the vessel darkness was reduced. The deep learning approach increased the lesion CNR and reduced the signal loss to a slightly lower extent, but it could additionally increase the vessel darkness. According to the image quality score, the quality of the deep-learning images was higher than that of the images obtained using the conventional approach. The radiologist ratings were mostly consistent with the quantitative scores, but the overall quality ratings differed among the readers.</p></div><div><h3><strong>Conclusion</strong></h3><p>Unlike the conventional algorithm, the deep-learning algorithm increased the vessel darkness. Therefore, it may be a viable alternative to conventional algorithms.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 2","pages":"Pages 258-269"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000879/pdfft?md5=b3e5b6c0be696f64222a77e9bdedeec2&pid=1-s2.0-S0939388923000879-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000879","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This research aims to develop a feature-guided deep learning approach and compare it with an optimized conventional post-processing algorithm in order to enhance the image quality of diffusion-weighted liver images and, in particular, to reduce the pulsation-induced signal loss occurring predominantly in the left liver lobe.

Methods

Data from 40 patients with liver lesions were used. For the conventional approach, the best-suited out of five examined algorithms was chosen. For the deep learning approach, a U-Net was trained. Instead of learning “gold-standard” target images, the network was trained to optimize four image features (lesion CNR, vessel darkness, data consistency, and pulsation artifact reduction), which could be assessed quantitatively using manually drawn ROIs. A quality score was calculated from these four features. As an additional quality assessment, three radiologists rated different features of the resulting images.

Results

The conventional approach could substantially increase the lesion CNR and reduce the pulsation-induced signal loss. However, the vessel darkness was reduced. The deep learning approach increased the lesion CNR and reduced the signal loss to a slightly lower extent, but it could additionally increase the vessel darkness. According to the image quality score, the quality of the deep-learning images was higher than that of the images obtained using the conventional approach. The radiologist ratings were mostly consistent with the quantitative scores, but the overall quality ratings differed among the readers.

Conclusion

Unlike the conventional algorithm, the deep-learning algorithm increased the vessel darkness. Therefore, it may be a viable alternative to conventional algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在肝脏弥散加权成像中,特征引导的深度学习可减少信号丢失并提高病变CNR
目的 本研究旨在开发一种以特征为导向的深度学习方法,并将其与优化的传统后处理算法进行比较,以提高扩散加权肝脏图像的质量,尤其是减少主要发生在左肝叶的脉动引起的信号损失。在传统方法中,选择了五种已研究过的算法中最合适的一种。对于深度学习方法,则采用 U-Net 进行训练。该网络不是学习 "黄金标准 "目标图像,而是通过训练来优化四个图像特征(病变 CNR、血管暗度、数据一致性和脉动伪影减少),这些特征可通过手动绘制的 ROI 进行定量评估。根据这四个特征计算出质量分数。作为额外的质量评估,三位放射科医生对所得图像的不同特征进行了评分。但是,血管的暗度降低了。深度学习方法提高了病变 CNR,减少了信号损失,但程度略低,而且还增加了血管暗度。根据图像质量评分,深度学习图像的质量高于使用传统方法获得的图像。结论与传统算法不同,深度学习算法增加了血管暗度。因此,它可能是传统算法的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1