Understanding COVID-19: comparison of spatio-temporal analysis methods used to study epidemic spread patterns in the United States.

IF 1 4区 医学 Q4 HEALTH CARE SCIENCES & SERVICES Geospatial Health Pub Date : 2023-05-25 DOI:10.4081/gh.2023.1200
Chunhui Liu, Xiaodi Su, Zhaoxuan Dong, Xingyu Liu, Chunxia Qiu
{"title":"Understanding COVID-19: comparison of spatio-temporal analysis methods used to study epidemic spread patterns in the United States.","authors":"Chunhui Liu,&nbsp;Xiaodi Su,&nbsp;Zhaoxuan Dong,&nbsp;Xingyu Liu,&nbsp;Chunxia Qiu","doi":"10.4081/gh.2023.1200","DOIUrl":null,"url":null,"abstract":"<p><p>This article examines three spatiotemporal methods used for analyzing of infectious diseases, with a focus on COVID-19 in the United States. The methods considered include inverse distance weighting (IDW) interpolation, retrospective spatiotemporal scan statistics and Bayesian spatiotemporal models. The study covers a 12-month period from May 2020 to April 2021, including monthly data from 49 states or regions in the United States. The results show that the spread of COVID-19 pandemic increased rapidly to a high value in winter of 2020, followed by a brief decline that later reverted into another increase. Spatially, the COVID-19 epidemic in the United States exhibited a multi-centre, rapid spread character, with clustering areas represented by states such as New York, North Dakota, Texas and California. By demonstrating the applicability and limitations of different analytical tools in investigating the spatiotemporal dynamics of disease outbreaks, this study contributes to the broader field of epidemiology and helps improve strategies for responding to future major public health events.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2023.1200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines three spatiotemporal methods used for analyzing of infectious diseases, with a focus on COVID-19 in the United States. The methods considered include inverse distance weighting (IDW) interpolation, retrospective spatiotemporal scan statistics and Bayesian spatiotemporal models. The study covers a 12-month period from May 2020 to April 2021, including monthly data from 49 states or regions in the United States. The results show that the spread of COVID-19 pandemic increased rapidly to a high value in winter of 2020, followed by a brief decline that later reverted into another increase. Spatially, the COVID-19 epidemic in the United States exhibited a multi-centre, rapid spread character, with clustering areas represented by states such as New York, North Dakota, Texas and California. By demonstrating the applicability and limitations of different analytical tools in investigating the spatiotemporal dynamics of disease outbreaks, this study contributes to the broader field of epidemiology and helps improve strategies for responding to future major public health events.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解COVID-19:用于研究美国流行病传播模式的时空分析方法的比较。
本文考察了用于分析传染病的三种时空方法,重点介绍了美国的COVID-19。考虑的方法包括逆距离加权插值、回顾性时空扫描统计和贝叶斯时空模型。该研究涵盖了从2020年5月到2021年4月的12个月,包括美国49个州或地区的月度数据。结果表明,2019冠状病毒病大流行传播在2020年冬季迅速上升至高位,随后短暂下降,随后又转为上升。从空间上看,美国新冠肺炎疫情呈现多中心、快速传播特征,以纽约州、北达科他州、德克萨斯州和加利福尼亚州为集聚区。通过展示不同分析工具在调查疾病暴发时空动态中的适用性和局限性,本研究有助于拓宽流行病学领域,并有助于改进应对未来重大公共卫生事件的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geospatial Health
Geospatial Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
2.40
自引率
11.80%
发文量
48
审稿时长
12 months
期刊介绍: The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.
期刊最新文献
Geographical accessibility to healthcare by point-of-interest data from online maps: a comparative study. Spatiotemporal evolution characteristics and attribution analysis of hepatitis A in mainland China. Socio-economic and environmental factors are related to acute exacerbation of chronic obstructive pulmonary disease incidence in Thailand. Flexible scan statistic with a restricted likelihood ratio for optimized COVID-19 surveillance. Nigeria's malaria prevalence in 2015: a geospatial, exploratory district-level approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1